adding trackers that might work

main
mwinter 2 years ago
parent bbc3fefdfc
commit e1a2324b0c

@ -0,0 +1,149 @@
# importing libraries
import cv2
import numpy as np
from scipy import stats
drawing = False
point1 = ()
point2 = ()
def mouse_drawing(event, x, y, flags, params):
global point1, point2, drawing
if event == cv2.EVENT_LBUTTONDOWN:
if drawing is False:
drawing = True
point1 = (x, y)
else:
drawing = False
elif event == cv2.EVENT_MOUSEMOVE:
if drawing is True:
point2 = (x, y)
# Our ROI, defined by two points
p1, p2 = None, None
state = 0
# Called every time a mouse event happen
def on_mouse(event, x, y, flags, userdata):
global state, point1, point2
# Left click
if event == cv2.EVENT_LBUTTONUP:
# Select first point
if state == 0:
point1 = (x,y)
state += 1
# Select second point
elif state == 1:
point2 = (x,y)
state += 1
#xFine = (848, 187, 225, 21.0)
#yFine = (604, 402, 20.5, 276)
xFine = (848, 187, 848 + 225, 187 + 21.0)
yFine = (604, 402, 604 + 20.5, 402 + 276)
frameCountMod = 0
centroidX = [0, 0]
centroidY = [0, 0]
def track(frame, ROI, centroid, update):
if(update):
crop = frame[int(ROI[1]):int(ROI[3]), int(ROI[0]):int(ROI[2])]
crop = cv2.cvtColor(crop, cv2.COLOR_RGB2GRAY)
crop = cv2.GaussianBlur(crop,(7,7),cv2.BORDER_DEFAULT)
#ret, thresh = cv2.threshold(crop, 100, 255, cv2.THRESH_OTSU + cv2.THRESH_BINARY)
ret,thresh = cv2.threshold(crop, 50, 255, 0)
M = cv2.moments(thresh)
# calculate x,y coordinate of center
if M["m00"] != 0:
centroid[0] = int(M["m10"] / M["m00"])
centroid[1] = int(M["m01"] / M["m00"])
#else:
# cX, cY = 0, 0
#print(cY)
cv2.circle(frame, (int(ROI[0]) + centroid[0], int(ROI[1]) + centroid[1]), 3, (0, 255, 0), -1)
cv2.namedWindow("Frame")
cv2.setMouseCallback("Frame", mouse_drawing)
cv2.namedWindow("Process")
# Create a VideoCapture object and read from input file
cap = cv2.VideoCapture("/home/mwinter/Portfolio/a_history_of_the_domino_problem/a_history_of_the_domino_problem_source/recs/a_history_of_the_domino_problem_final_documentation_hq.mp4")
cap.set(cv2.CAP_PROP_POS_FRAMES, 10000)
# Check if camera opened successfully
if (cap.isOpened()== False):
print("Error opening video file")
frameCountMod = 0
centroidX = [0, 0]
centroidY = [0, 0]
# Read until video is completed
while(cap.isOpened()):
# Capture frame-by-frame
ret, frame = cap.read()
if ret == True:
# Display the resulting frame
if point1 and point2:
px = sorted([point1[0], point2[0]])
py = sorted([point1[1], point2[1]])
#cv2.rectangle(frame, point1, point2, (0, 255, 0))
xFine = (px[0], py[0], px[1], py[1])
crop = frame[int(xFine[1]):int(xFine[3]), int(xFine[0]):int(xFine[2])]
gray = cv2.cvtColor(crop, cv2.COLOR_BGR2GRAY)
fm = cv2.Laplacian(gray, cv2.CV_64F).var()
kernel = np.ones((30, 50), np.uint8)
text = "Not Blurry"
blur = cv2.GaussianBlur(cv2.bitwise_not(crop),(1001,3), 3, 1) * 3
dilation = cv2.dilate(gray, kernel, iterations=1)
ret,dilation = cv2.threshold(dilation,20,255,cv2.THRESH_BINARY_INV)
mean = pow(dilation.mean(), 3)
# if the focus measure is less than the supplied threshold,
# then the image should be considered "blurry"
if fm < 100.0:
text = "Blurry"
# show the image
cv2.rectangle(frame, (int(xFine[0]), int(xFine[1])), (int(xFine[2]),int(xFine[3])), (0, 255, 0))
cv2.rectangle(frame, (int(xFine[0]), int(xFine[1])), (int(xFine[2]),int(xFine[3])), (0, 255, 0))
cv2.putText(frame, "{}: {:.2f}".format(text, fm), (10, 30),
cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 3)
cv2.putText(frame, "{}: {:.2f}".format("Brightness", mean), (10, 100),
cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 3)
cv2.imshow("Frame", frame)
cv2.imshow("Process", crop)
# Press Q on keyboard to exit
key = cv2.waitKey(100)
if key == 32:
cv2.waitKey()
elif key == ord('q'):
break
# Break the loop
else:
break
# When everything done, release
# the video capture object
cap.release()
# Closes all the frames
cv2.destroyAllWindows()

@ -0,0 +1,148 @@
# importing libraries
import cv2
import numpy as np
from scipy import stats
rectToSet = 'x'
moving = False
roiXCenter = (960, 195)
roiYCenter = (615, 530)
w = 10
l1 = 50
l2 = 150
l3 = 20
roiXInner = (roiXCenter[0] - l1, roiXCenter[1] - w, roiXCenter[0] + l1, roiXCenter[1] + w)
roiXOuter = (roiXCenter[0] - l2, roiXCenter[1] - w, roiXCenter[0] + l2, roiXCenter[1] + w)
roiXCourse = (roiXCenter[0] - l3, roiXCenter[1] + (w * 1), roiXCenter[0] + l3, roiXCenter[1] + (w * 3))
roiYInner = (roiYCenter[0] - w, roiYCenter[1] - l1, roiYCenter[0] + w, roiYCenter[1] + l1)
roiYOuter = (roiYCenter[0] - w, roiYCenter[1] - l2, roiYCenter[0] + w, roiYCenter[1] + l2)
roiYCourse = (roiYCenter[0] + (w * 1), roiYCenter[1] - l3, roiYCenter[0] + (w * 3), roiYCenter[1] + l3)
dilationVal = 75
def moveROI(event, x, y, flags, params):
global roiXCenter, roiYCenter, roiXInner, roiXOuter, roiXCourse, roiYInner, roiYOuter, roiYCourse, moving
if event == cv2.EVENT_LBUTTONDOWN:
moving = True
elif event==cv2.EVENT_MOUSEMOVE:
if moving==True:
if rectToSet=='x':
roiXCenter = (x, y)
roiXInner = (roiXCenter[0] - l1, roiXCenter[1] - w, roiXCenter[0] + l1, roiXCenter[1] + w)
roiXOuter = (roiXCenter[0] - l2, roiXCenter[1] - w, roiXCenter[0] + l2, roiXCenter[1] + w)
roiXCourse = (roiXCenter[0] - l3, roiXCenter[1] + (w * 1), roiXCenter[0] + l3, roiXCenter[1] + (w * 3))
elif rectToSet=='y':
roiYCenter = (x, y)
roiYInner = (roiYCenter[0] - w, roiYCenter[1] - l1, roiYCenter[0] + w, roiYCenter[1] + l1)
roiYOuter = (roiYCenter[0] - w, roiYCenter[1] - l2, roiYCenter[0] + w, roiYCenter[1] + l2)
roiYCourse = (roiYCenter[0] + (w * 1), roiYCenter[1] - l3, roiYCenter[0] + (w * 3), roiYCenter[1] + l3)
elif event == cv2.EVENT_LBUTTONUP:
moving = False
cv2.namedWindow("Frame")
cv2.setMouseCallback("Frame", moveROI)
#cv2.namedWindow("Process")
# Create a VideoCapture object and read from input file
cap = cv2.VideoCapture("/home/mwinter/Portfolio/a_history_of_the_domino_problem/a_history_of_the_domino_problem_source/recs/a_history_of_the_domino_problem_final_documentation_hq.mp4")
cap.set(cv2.CAP_PROP_POS_FRAMES, 10000)
# Check if camera opened successfully
if (cap.isOpened()== False):
print("Error opening video file")
def track(frame, roiInner, roiOuter, roiCourse):
w = 30
l1 = 30
l2 = 100
cropFine = frame[roiOuter[1]:roiOuter[3], roiOuter[0]:roiOuter[2]]
cropCourse = frame[roiCourse[1]:roiCourse[3], roiCourse[0]:roiCourse[2]]
#gray = cv2.cvtColor(crop, cv2.COLOR_BGR2GRAY)
#may not need any of this
kernel = np.ones((dilationVal, dilationVal), np.uint8)
dilation = cv2.dilate(cropFine, kernel, iterations=1)
ret,tresh = cv2.threshold(dilation,20,255,cv2.THRESH_BINARY)
#mean = pow(frame[roiInner[1]:roiInner[3], roiInner[0]:roiInner[2]].mean(), 3)
frame[roiOuter[1]:roiOuter[3], roiOuter[0]:roiOuter[2]] = tresh
meanFine = pow(frame[roiInner[1]:roiInner[3], roiInner[0]:roiInner[2]].mean(), 2)
meanCourse = frame[roiCourse[1]:roiCourse[3], roiCourse[0]:roiCourse[2]].mean()
mean = 0
if(meanCourse > 10):
mean = meanFine
distance = pow(255, 2) - mean
return distance
def drawRects(frame):
cv2.rectangle(frame, (roiXOuter[0], roiXOuter[1]), (roiXOuter[2], roiXOuter[3]), (0, 255, 0))
cv2.rectangle(frame, (roiXCenter[0] - l1, roiXInner[1]), (roiXCenter[0], roiXInner[3]), (0, 255, 0))
cv2.rectangle(frame, (roiXCenter[0], roiXInner[1]), (roiXCenter[0] + l1, roiXInner[3]), (0, 255, 0))
cv2.rectangle(frame, (roiXCourse[0], roiXCourse[1]), (roiXCourse[2], roiXCourse[3]), (0, 255, 0))
cv2.rectangle(frame, (roiYOuter[0], roiYOuter[1]), (roiYOuter[2], roiYOuter[3]), (0, 255, 0))
cv2.rectangle(frame, (roiYInner[0], roiYCenter[1] - l1), (roiYInner[2], roiYCenter[1]), (0, 255, 0))
cv2.rectangle(frame, (roiYInner[0], roiYCenter[1]), (roiYInner[2], roiYCenter[1] + l1), (0, 255, 0))
cv2.rectangle(frame, (roiYCourse[0], roiYCourse[1]), (roiYCourse[2], roiYCourse[3]), (0, 255, 0))
# Read until video is completed
while(cap.isOpened()):
# Capture frame-by-frame
ret, frame = cap.read()
if ret == True:
# Display the resulting frame
distanceX = track(frame, roiXInner, roiXOuter, roiXCourse)
distanceY = track(frame, roiYInner, roiYOuter, roiYCourse)
drawRects(frame)
cv2.putText(frame, "{}: {:.2f}".format("distance x", distanceX), (10, 100), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 3)
cv2.putText(frame, "{}: {:.2f}".format("distance y", distanceY), (10, 200), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 3)
#fm = cv2.Laplacian(gray, cv2.CV_64F).var()
#cv2.putText(frame, "{}: {:.2f}".format("blur", fm), (10, 30),
#cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 3)
cv2.imshow("Frame", frame)
#cv2.imshow("Process", tresh)
# Press Q on keyboard to exit
key = cv2.waitKey(1)
if key == 32:
cv2.waitKey()
elif key == ord('+'):
dilationVal = dilationVal + 1
elif key == ord('-'):
if dilationVal > 0:
dilationVal = dilationVal - 1
elif key == ord('x'):
rectToSet = 'x'
elif key == ord('y'):
rectToSet = 'y'
elif key == ord('q'):
break
# Break the loop
else:
break
# When everything done, release
# the video capture object
cap.release()
# Closes all the frames
cv2.destroyAllWindows()
Loading…
Cancel
Save