/** * Copyright (c) 2014, Facebook, Inc. * All rights reserved. * * This source code is licensed under the BSD-style license found in the * https://raw.github.com/facebook/regenerator/master/LICENSE file. An * additional grant of patent rights can be found in the PATENTS file in * the same directory. */ import assert from "assert"; import * as t from "babel-types"; import * as leap from "./leap"; import * as meta from "./meta"; import * as util from "./util"; let hasOwn = Object.prototype.hasOwnProperty; function Emitter(contextId) { assert.ok(this instanceof Emitter); t.assertIdentifier(contextId); // Used to generate unique temporary names. this.nextTempId = 0; // In order to make sure the context object does not collide with // anything in the local scope, we might have to rename it, so we // refer to it symbolically instead of just assuming that it will be // called "context". this.contextId = contextId; // An append-only list of Statements that grows each time this.emit is // called. this.listing = []; // A sparse array whose keys correspond to locations in this.listing // that have been marked as branch/jump targets. this.marked = [true]; // The last location will be marked when this.getDispatchLoop is // called. this.finalLoc = loc(); // A list of all leap.TryEntry statements emitted. this.tryEntries = []; // Each time we evaluate the body of a loop, we tell this.leapManager // to enter a nested loop context that determines the meaning of break // and continue statements therein. this.leapManager = new leap.LeapManager(this); } let Ep = Emitter.prototype; exports.Emitter = Emitter; // Offsets into this.listing that could be used as targets for branches or // jumps are represented as numeric Literal nodes. This representation has // the amazingly convenient benefit of allowing the exact value of the // location to be determined at any time, even after generating code that // refers to the location. function loc() { return t.numericLiteral(-1); } // Sets the exact value of the given location to the offset of the next // Statement emitted. Ep.mark = function(loc) { t.assertLiteral(loc); let index = this.listing.length; if (loc.value === -1) { loc.value = index; } else { // Locations can be marked redundantly, but their values cannot change // once set the first time. assert.strictEqual(loc.value, index); } this.marked[index] = true; return loc; }; Ep.emit = function(node) { if (t.isExpression(node)) { node = t.expressionStatement(node); } t.assertStatement(node); this.listing.push(node); }; // Shorthand for emitting assignment statements. This will come in handy // for assignments to temporary variables. Ep.emitAssign = function(lhs, rhs) { this.emit(this.assign(lhs, rhs)); return lhs; }; // Shorthand for an assignment statement. Ep.assign = function(lhs, rhs) { return t.expressionStatement( t.assignmentExpression("=", lhs, rhs)); }; // Convenience function for generating expressions like context.next, // context.sent, and context.rval. Ep.contextProperty = function(name, computed) { return t.memberExpression( this.contextId, computed ? t.stringLiteral(name) : t.identifier(name), !!computed ); }; // Shorthand for setting context.rval and jumping to `context.stop()`. Ep.stop = function(rval) { if (rval) { this.setReturnValue(rval); } this.jump(this.finalLoc); }; Ep.setReturnValue = function(valuePath) { t.assertExpression(valuePath.value); this.emitAssign( this.contextProperty("rval"), this.explodeExpression(valuePath) ); }; Ep.clearPendingException = function(tryLoc, assignee) { t.assertLiteral(tryLoc); let catchCall = t.callExpression( this.contextProperty("catch", true), [tryLoc] ); if (assignee) { this.emitAssign(assignee, catchCall); } else { this.emit(catchCall); } }; // Emits code for an unconditional jump to the given location, even if the // exact value of the location is not yet known. Ep.jump = function(toLoc) { this.emitAssign(this.contextProperty("next"), toLoc); this.emit(t.breakStatement()); }; // Conditional jump. Ep.jumpIf = function(test, toLoc) { t.assertExpression(test); t.assertLiteral(toLoc); this.emit(t.ifStatement( test, t.blockStatement([ this.assign(this.contextProperty("next"), toLoc), t.breakStatement() ]) )); }; // Conditional jump, with the condition negated. Ep.jumpIfNot = function(test, toLoc) { t.assertExpression(test); t.assertLiteral(toLoc); let negatedTest; if (t.isUnaryExpression(test) && test.operator === "!") { // Avoid double negation. negatedTest = test.argument; } else { negatedTest = t.unaryExpression("!", test); } this.emit(t.ifStatement( negatedTest, t.blockStatement([ this.assign(this.contextProperty("next"), toLoc), t.breakStatement() ]) )); }; // Returns a unique MemberExpression that can be used to store and // retrieve temporary values. Since the object of the member expression is // the context object, which is presumed to coexist peacefully with all // other local variables, and since we just increment `nextTempId` // monotonically, uniqueness is assured. Ep.makeTempVar = function() { return this.contextProperty("t" + this.nextTempId++); }; Ep.getContextFunction = function(id) { return t.functionExpression( id || null/*Anonymous*/, [this.contextId], t.blockStatement([this.getDispatchLoop()]), false, // Not a generator anymore! false // Nor an expression. ); }; // Turns this.listing into a loop of the form // // while (1) switch (context.next) { // case 0: // ... // case n: // return context.stop(); // } // // Each marked location in this.listing will correspond to one generated // case statement. Ep.getDispatchLoop = function() { let self = this; let cases = []; let current; // If we encounter a break, continue, or return statement in a switch // case, we can skip the rest of the statements until the next case. let alreadyEnded = false; self.listing.forEach(function(stmt, i) { if (self.marked.hasOwnProperty(i)) { cases.push(t.switchCase( t.numericLiteral(i), current = [])); alreadyEnded = false; } if (!alreadyEnded) { current.push(stmt); if (t.isCompletionStatement(stmt)) alreadyEnded = true; } }); // Now that we know how many statements there will be in this.listing, // we can finally resolve this.finalLoc.value. this.finalLoc.value = this.listing.length; cases.push( t.switchCase(this.finalLoc, [ // Intentionally fall through to the "end" case... ]), // So that the runtime can jump to the final location without having // to know its offset, we provide the "end" case as a synonym. t.switchCase(t.stringLiteral("end"), [ // This will check/clear both context.thrown and context.rval. t.returnStatement( t.callExpression(this.contextProperty("stop"), []) ) ]) ); return t.whileStatement( t.numericLiteral(1), t.switchStatement( t.assignmentExpression( "=", this.contextProperty("prev"), this.contextProperty("next") ), cases ) ); }; Ep.getTryLocsList = function() { if (this.tryEntries.length === 0) { // To avoid adding a needless [] to the majority of runtime.wrap // argument lists, force the caller to handle this case specially. return null; } let lastLocValue = 0; return t.arrayExpression( this.tryEntries.map(function(tryEntry) { let thisLocValue = tryEntry.firstLoc.value; assert.ok(thisLocValue >= lastLocValue, "try entries out of order"); lastLocValue = thisLocValue; let ce = tryEntry.catchEntry; let fe = tryEntry.finallyEntry; let locs = [ tryEntry.firstLoc, // The null here makes a hole in the array. ce ? ce.firstLoc : null ]; if (fe) { locs[2] = fe.firstLoc; locs[3] = fe.afterLoc; } return t.arrayExpression(locs); }) ); }; // All side effects must be realized in order. // If any subexpression harbors a leap, all subexpressions must be // neutered of side effects. // No destructive modification of AST nodes. Ep.explode = function(path, ignoreResult) { let node = path.node; let self = this; t.assertNode(node); if (t.isDeclaration(node)) throw getDeclError(node); if (t.isStatement(node)) return self.explodeStatement(path); if (t.isExpression(node)) return self.explodeExpression(path, ignoreResult); switch (node.type) { case "Program": return path.get("body").map( self.explodeStatement, self ); case "VariableDeclarator": throw getDeclError(node); // These node types should be handled by their parent nodes // (ObjectExpression, SwitchStatement, and TryStatement, respectively). case "Property": case "SwitchCase": case "CatchClause": throw new Error( node.type + " nodes should be handled by their parents"); default: throw new Error( "unknown Node of type " + JSON.stringify(node.type)); } }; function getDeclError(node) { return new Error( "all declarations should have been transformed into " + "assignments before the Exploder began its work: " + JSON.stringify(node)); } Ep.explodeStatement = function(path, labelId) { let stmt = path.node; let self = this; let before, after, head; t.assertStatement(stmt); if (labelId) { t.assertIdentifier(labelId); } else { labelId = null; } // Explode BlockStatement nodes even if they do not contain a yield, // because we don't want or need the curly braces. if (t.isBlockStatement(stmt)) { path.get("body").forEach(function (path) { self.explodeStatement(path); }); return; } if (!meta.containsLeap(stmt)) { // Technically we should be able to avoid emitting the statement // altogether if !meta.hasSideEffects(stmt), but that leads to // confusing generated code (for instance, `while (true) {}` just // disappears) and is probably a more appropriate job for a dedicated // dead code elimination pass. self.emit(stmt); return; } switch (stmt.type) { case "ExpressionStatement": self.explodeExpression(path.get("expression"), true); break; case "LabeledStatement": after = loc(); // Did you know you can break from any labeled block statement or // control structure? Well, you can! Note: when a labeled loop is // encountered, the leap.LabeledEntry created here will immediately // enclose a leap.LoopEntry on the leap manager's stack, and both // entries will have the same label. Though this works just fine, it // may seem a bit redundant. In theory, we could check here to // determine if stmt knows how to handle its own label; for example, // stmt happens to be a WhileStatement and so we know it's going to // establish its own LoopEntry when we explode it (below). Then this // LabeledEntry would be unnecessary. Alternatively, we might be // tempted not to pass stmt.label down into self.explodeStatement, // because we've handled the label here, but that's a mistake because // labeled loops may contain labeled continue statements, which is not // something we can handle in this generic case. All in all, I think a // little redundancy greatly simplifies the logic of this case, since // it's clear that we handle all possible LabeledStatements correctly // here, regardless of whether they interact with the leap manager // themselves. Also remember that labels and break/continue-to-label // statements are rare, and all of this logic happens at transform // time, so it has no additional runtime cost. self.leapManager.withEntry( new leap.LabeledEntry(after, stmt.label), function() { self.explodeStatement(path.get("body"), stmt.label); } ); self.mark(after); break; case "WhileStatement": before = loc(); after = loc(); self.mark(before); self.jumpIfNot(self.explodeExpression(path.get("test")), after); self.leapManager.withEntry( new leap.LoopEntry(after, before, labelId), function() { self.explodeStatement(path.get("body")); } ); self.jump(before); self.mark(after); break; case "DoWhileStatement": let first = loc(); let test = loc(); after = loc(); self.mark(first); self.leapManager.withEntry( new leap.LoopEntry(after, test, labelId), function() { self.explode(path.get("body")); } ); self.mark(test); self.jumpIf(self.explodeExpression(path.get("test")), first); self.mark(after); break; case "ForStatement": head = loc(); let update = loc(); after = loc(); if (stmt.init) { // We pass true here to indicate that if stmt.init is an expression // then we do not care about its result. self.explode(path.get("init"), true); } self.mark(head); if (stmt.test) { self.jumpIfNot(self.explodeExpression(path.get("test")), after); } else { // No test means continue unconditionally. } self.leapManager.withEntry( new leap.LoopEntry(after, update, labelId), function() { self.explodeStatement(path.get("body")); } ); self.mark(update); if (stmt.update) { // We pass true here to indicate that if stmt.update is an // expression then we do not care about its result. self.explode(path.get("update"), true); } self.jump(head); self.mark(after); break; case "TypeCastExpression": return self.explodeExpression(path.get("expression")); case "ForInStatement": head = loc(); after = loc(); let keyIterNextFn = self.makeTempVar(); self.emitAssign( keyIterNextFn, t.callExpression( util.runtimeProperty("keys"), [self.explodeExpression(path.get("right"))] ) ); self.mark(head); let keyInfoTmpVar = self.makeTempVar(); self.jumpIf( t.memberExpression( t.assignmentExpression( "=", keyInfoTmpVar, t.callExpression(keyIterNextFn, []) ), t.identifier("done"), false ), after ); self.emitAssign( stmt.left, t.memberExpression( keyInfoTmpVar, t.identifier("value"), false ) ); self.leapManager.withEntry( new leap.LoopEntry(after, head, labelId), function() { self.explodeStatement(path.get("body")); } ); self.jump(head); self.mark(after); break; case "BreakStatement": self.emitAbruptCompletion({ type: "break", target: self.leapManager.getBreakLoc(stmt.label) }); break; case "ContinueStatement": self.emitAbruptCompletion({ type: "continue", target: self.leapManager.getContinueLoc(stmt.label) }); break; case "SwitchStatement": // Always save the discriminant into a temporary variable in case the // test expressions overwrite values like context.sent. let disc = self.emitAssign( self.makeTempVar(), self.explodeExpression(path.get("discriminant")) ); after = loc(); let defaultLoc = loc(); let condition = defaultLoc; let caseLocs = []; // If there are no cases, .cases might be undefined. let cases = stmt.cases || []; for (let i = cases.length - 1; i >= 0; --i) { let c = cases[i]; t.assertSwitchCase(c); if (c.test) { condition = t.conditionalExpression( t.binaryExpression("===", disc, c.test), caseLocs[i] = loc(), condition ); } else { caseLocs[i] = defaultLoc; } } let discriminant = path.get("discriminant"); util.replaceWithOrRemove(discriminant, condition); self.jump(self.explodeExpression(discriminant)); self.leapManager.withEntry( new leap.SwitchEntry(after), function() { path.get("cases").forEach(function(casePath) { let i = casePath.key; self.mark(caseLocs[i]); casePath.get("consequent").forEach(function (path) { self.explodeStatement(path); }); }); } ); self.mark(after); if (defaultLoc.value === -1) { self.mark(defaultLoc); assert.strictEqual(after.value, defaultLoc.value); } break; case "IfStatement": let elseLoc = stmt.alternate && loc(); after = loc(); self.jumpIfNot( self.explodeExpression(path.get("test")), elseLoc || after ); self.explodeStatement(path.get("consequent")); if (elseLoc) { self.jump(after); self.mark(elseLoc); self.explodeStatement(path.get("alternate")); } self.mark(after); break; case "ReturnStatement": self.emitAbruptCompletion({ type: "return", value: self.explodeExpression(path.get("argument")) }); break; case "WithStatement": throw new Error("WithStatement not supported in generator functions."); case "TryStatement": after = loc(); let handler = stmt.handler; let catchLoc = handler && loc(); let catchEntry = catchLoc && new leap.CatchEntry( catchLoc, handler.param ); let finallyLoc = stmt.finalizer && loc(); let finallyEntry = finallyLoc && new leap.FinallyEntry(finallyLoc, after); let tryEntry = new leap.TryEntry( self.getUnmarkedCurrentLoc(), catchEntry, finallyEntry ); self.tryEntries.push(tryEntry); self.updateContextPrevLoc(tryEntry.firstLoc); self.leapManager.withEntry(tryEntry, function() { self.explodeStatement(path.get("block")); if (catchLoc) { if (finallyLoc) { // If we have both a catch block and a finally block, then // because we emit the catch block first, we need to jump over // it to the finally block. self.jump(finallyLoc); } else { // If there is no finally block, then we need to jump over the // catch block to the fall-through location. self.jump(after); } self.updateContextPrevLoc(self.mark(catchLoc)); let bodyPath = path.get("handler.body"); let safeParam = self.makeTempVar(); self.clearPendingException(tryEntry.firstLoc, safeParam); bodyPath.traverse(catchParamVisitor, { safeParam: safeParam, catchParamName: handler.param.name }); self.leapManager.withEntry(catchEntry, function() { self.explodeStatement(bodyPath); }); } if (finallyLoc) { self.updateContextPrevLoc(self.mark(finallyLoc)); self.leapManager.withEntry(finallyEntry, function() { self.explodeStatement(path.get("finalizer")); }); self.emit(t.returnStatement(t.callExpression( self.contextProperty("finish"), [finallyEntry.firstLoc] ))); } }); self.mark(after); break; case "ThrowStatement": self.emit(t.throwStatement( self.explodeExpression(path.get("argument")) )); break; default: throw new Error( "unknown Statement of type " + JSON.stringify(stmt.type)); } }; let catchParamVisitor = { Identifier: function(path, state) { if (path.node.name === state.catchParamName && util.isReference(path)) { util.replaceWithOrRemove(path, state.safeParam); } }, Scope: function(path, state) { if (path.scope.hasOwnBinding(state.catchParamName)) { // Don't descend into nested scopes that shadow the catch // parameter with their own declarations. path.skip(); } } }; Ep.emitAbruptCompletion = function(record) { if (!isValidCompletion(record)) { assert.ok( false, "invalid completion record: " + JSON.stringify(record) ); } assert.notStrictEqual( record.type, "normal", "normal completions are not abrupt" ); let abruptArgs = [t.stringLiteral(record.type)]; if (record.type === "break" || record.type === "continue") { t.assertLiteral(record.target); abruptArgs[1] = record.target; } else if (record.type === "return" || record.type === "throw") { if (record.value) { t.assertExpression(record.value); abruptArgs[1] = record.value; } } this.emit( t.returnStatement( t.callExpression( this.contextProperty("abrupt"), abruptArgs ) ) ); }; function isValidCompletion(record) { let type = record.type; if (type === "normal") { return !hasOwn.call(record, "target"); } if (type === "break" || type === "continue") { return !hasOwn.call(record, "value") && t.isLiteral(record.target); } if (type === "return" || type === "throw") { return hasOwn.call(record, "value") && !hasOwn.call(record, "target"); } return false; } // Not all offsets into emitter.listing are potential jump targets. For // example, execution typically falls into the beginning of a try block // without jumping directly there. This method returns the current offset // without marking it, so that a switch case will not necessarily be // generated for this offset (I say "not necessarily" because the same // location might end up being marked in the process of emitting other // statements). There's no logical harm in marking such locations as jump // targets, but minimizing the number of switch cases keeps the generated // code shorter. Ep.getUnmarkedCurrentLoc = function() { return t.numericLiteral(this.listing.length); }; // The context.prev property takes the value of context.next whenever we // evaluate the switch statement discriminant, which is generally good // enough for tracking the last location we jumped to, but sometimes // context.prev needs to be more precise, such as when we fall // successfully out of a try block and into a finally block without // jumping. This method exists to update context.prev to the freshest // available location. If we were implementing a full interpreter, we // would know the location of the current instruction with complete // precision at all times, but we don't have that luxury here, as it would // be costly and verbose to set context.prev before every statement. Ep.updateContextPrevLoc = function(loc) { if (loc) { t.assertLiteral(loc); if (loc.value === -1) { // If an uninitialized location literal was passed in, set its value // to the current this.listing.length. loc.value = this.listing.length; } else { // Otherwise assert that the location matches the current offset. assert.strictEqual(loc.value, this.listing.length); } } else { loc = this.getUnmarkedCurrentLoc(); } // Make sure context.prev is up to date in case we fell into this try // statement without jumping to it. TODO Consider avoiding this // assignment when we know control must have jumped here. this.emitAssign(this.contextProperty("prev"), loc); }; Ep.explodeExpression = function(path, ignoreResult) { let expr = path.node; if (expr) { t.assertExpression(expr); } else { return expr; } let self = this; let result; // Used optionally by several cases below. let after; function finish(expr) { t.assertExpression(expr); if (ignoreResult) { self.emit(expr); } else { return expr; } } // If the expression does not contain a leap, then we either emit the // expression as a standalone statement or return it whole. if (!meta.containsLeap(expr)) { return finish(expr); } // If any child contains a leap (such as a yield or labeled continue or // break statement), then any sibling subexpressions will almost // certainly have to be exploded in order to maintain the order of their // side effects relative to the leaping child(ren). let hasLeapingChildren = meta.containsLeap.onlyChildren(expr); // In order to save the rest of explodeExpression from a combinatorial // trainwreck of special cases, explodeViaTempVar is responsible for // deciding when a subexpression needs to be "exploded," which is my // very technical term for emitting the subexpression as an assignment // to a temporary variable and the substituting the temporary variable // for the original subexpression. Think of exploded view diagrams, not // Michael Bay movies. The point of exploding subexpressions is to // control the precise order in which the generated code realizes the // side effects of those subexpressions. function explodeViaTempVar(tempVar, childPath, ignoreChildResult) { assert.ok( !ignoreChildResult || !tempVar, "Ignoring the result of a child expression but forcing it to " + "be assigned to a temporary variable?" ); let result = self.explodeExpression(childPath, ignoreChildResult); if (ignoreChildResult) { // Side effects already emitted above. } else if (tempVar || (hasLeapingChildren && !t.isLiteral(result))) { // If tempVar was provided, then the result will always be assigned // to it, even if the result does not otherwise need to be assigned // to a temporary variable. When no tempVar is provided, we have // the flexibility to decide whether a temporary variable is really // necessary. Unfortunately, in general, a temporary variable is // required whenever any child contains a yield expression, since it // is difficult to prove (at all, let alone efficiently) whether // this result would evaluate to the same value before and after the // yield (see #206). One narrow case where we can prove it doesn't // matter (and thus we do not need a temporary variable) is when the // result in question is a Literal value. result = self.emitAssign( tempVar || self.makeTempVar(), result ); } return result; } // If ignoreResult is true, then we must take full responsibility for // emitting the expression with all its side effects, and we should not // return a result. switch (expr.type) { case "MemberExpression": return finish(t.memberExpression( self.explodeExpression(path.get("object")), expr.computed ? explodeViaTempVar(null, path.get("property")) : expr.property, expr.computed )); case "CallExpression": let calleePath = path.get("callee"); let argsPath = path.get("arguments"); let newCallee; let newArgs = []; let hasLeapingArgs = false; argsPath.forEach(function(argPath) { hasLeapingArgs = hasLeapingArgs || meta.containsLeap(argPath.node); }); if (t.isMemberExpression(calleePath.node)) { if (hasLeapingArgs) { // If the arguments of the CallExpression contained any yield // expressions, then we need to be sure to evaluate the callee // before evaluating the arguments, but if the callee was a member // expression, then we must be careful that the object of the // member expression still gets bound to `this` for the call. let newObject = explodeViaTempVar( // Assign the exploded callee.object expression to a temporary // variable so that we can use it twice without reevaluating it. self.makeTempVar(), calleePath.get("object") ); let newProperty = calleePath.node.computed ? explodeViaTempVar(null, calleePath.get("property")) : calleePath.node.property; newArgs.unshift(newObject); newCallee = t.memberExpression( t.memberExpression( newObject, newProperty, calleePath.node.computed ), t.identifier("call"), false ); } else { newCallee = self.explodeExpression(calleePath); } } else { newCallee = explodeViaTempVar(null, calleePath); if (t.isMemberExpression(newCallee)) { // If the callee was not previously a MemberExpression, then the // CallExpression was "unqualified," meaning its `this` object // should be the global object. If the exploded expression has // become a MemberExpression (e.g. a context property, probably a // temporary variable), then we need to force it to be unqualified // by using the (0, object.property)(...) trick; otherwise, it // will receive the object of the MemberExpression as its `this` // object. newCallee = t.sequenceExpression([ t.numericLiteral(0), newCallee ]); } } argsPath.forEach(function(argPath) { newArgs.push(explodeViaTempVar(null, argPath)); }); return finish(t.callExpression( newCallee, newArgs )); case "NewExpression": return finish(t.newExpression( explodeViaTempVar(null, path.get("callee")), path.get("arguments").map(function(argPath) { return explodeViaTempVar(null, argPath); }) )); case "ObjectExpression": return finish(t.objectExpression( path.get("properties").map(function(propPath) { if (propPath.isObjectProperty()) { return t.objectProperty( propPath.node.key, explodeViaTempVar(null, propPath.get("value")), propPath.node.computed ); } else { return propPath.node; } }) )); case "ArrayExpression": return finish(t.arrayExpression( path.get("elements").map(function(elemPath) { return explodeViaTempVar(null, elemPath); }) )); case "SequenceExpression": let lastIndex = expr.expressions.length - 1; path.get("expressions").forEach(function(exprPath) { if (exprPath.key === lastIndex) { result = self.explodeExpression(exprPath, ignoreResult); } else { self.explodeExpression(exprPath, true); } }); return result; case "LogicalExpression": after = loc(); if (!ignoreResult) { result = self.makeTempVar(); } let left = explodeViaTempVar(result, path.get("left")); if (expr.operator === "&&") { self.jumpIfNot(left, after); } else { assert.strictEqual(expr.operator, "||"); self.jumpIf(left, after); } explodeViaTempVar(result, path.get("right"), ignoreResult); self.mark(after); return result; case "ConditionalExpression": let elseLoc = loc(); after = loc(); let test = self.explodeExpression(path.get("test")); self.jumpIfNot(test, elseLoc); if (!ignoreResult) { result = self.makeTempVar(); } explodeViaTempVar(result, path.get("consequent"), ignoreResult); self.jump(after); self.mark(elseLoc); explodeViaTempVar(result, path.get("alternate"), ignoreResult); self.mark(after); return result; case "UnaryExpression": return finish(t.unaryExpression( expr.operator, // Can't (and don't need to) break up the syntax of the argument. // Think about delete a[b]. self.explodeExpression(path.get("argument")), !!expr.prefix )); case "BinaryExpression": return finish(t.binaryExpression( expr.operator, explodeViaTempVar(null, path.get("left")), explodeViaTempVar(null, path.get("right")) )); case "AssignmentExpression": return finish(t.assignmentExpression( expr.operator, self.explodeExpression(path.get("left")), self.explodeExpression(path.get("right")) )); case "UpdateExpression": return finish(t.updateExpression( expr.operator, self.explodeExpression(path.get("argument")), expr.prefix )); case "YieldExpression": after = loc(); let arg = expr.argument && self.explodeExpression(path.get("argument")); if (arg && expr.delegate) { let result = self.makeTempVar(); self.emit(t.returnStatement(t.callExpression( self.contextProperty("delegateYield"), [ arg, t.stringLiteral(result.property.name), after ] ))); self.mark(after); return result; } self.emitAssign(self.contextProperty("next"), after); self.emit(t.returnStatement(arg || null)); self.mark(after); return self.contextProperty("sent"); default: throw new Error( "unknown Expression of type " + JSON.stringify(expr.type)); } };