@@ -0,0 +1,675 @@ | |||
GNU GENERAL PUBLIC LICENSE | |||
Version 3, 29 June 2007 | |||
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/> | |||
Everyone is permitted to copy and distribute verbatim copies | |||
of this license document, but changing it is not allowed. | |||
Preamble | |||
The GNU General Public License is a free, copyleft license for | |||
software and other kinds of works. | |||
The licenses for most software and other practical works are designed | |||
to take away your freedom to share and change the works. By contrast, | |||
the GNU General Public License is intended to guarantee your freedom to | |||
share and change all versions of a program--to make sure it remains free | |||
software for all its users. We, the Free Software Foundation, use the | |||
GNU General Public License for most of our software; it applies also to | |||
any other work released this way by its authors. You can apply it to | |||
your programs, too. | |||
When we speak of free software, we are referring to freedom, not | |||
price. Our General Public Licenses are designed to make sure that you | |||
have the freedom to distribute copies of free software (and charge for | |||
them if you wish), that you receive source code or can get it if you | |||
want it, that you can change the software or use pieces of it in new | |||
free programs, and that you know you can do these things. | |||
To protect your rights, we need to prevent others from denying you | |||
these rights or asking you to surrender the rights. Therefore, you have | |||
certain responsibilities if you distribute copies of the software, or if | |||
you modify it: responsibilities to respect the freedom of others. | |||
For example, if you distribute copies of such a program, whether | |||
gratis or for a fee, you must pass on to the recipients the same | |||
freedoms that you received. You must make sure that they, too, receive | |||
or can get the source code. And you must show them these terms so they | |||
know their rights. | |||
Developers that use the GNU GPL protect your rights with two steps: | |||
(1) assert copyright on the software, and (2) offer you this License | |||
giving you legal permission to copy, distribute and/or modify it. | |||
For the developers' and authors' protection, the GPL clearly explains | |||
that there is no warranty for this free software. For both users' and | |||
authors' sake, the GPL requires that modified versions be marked as | |||
changed, so that their problems will not be attributed erroneously to | |||
authors of previous versions. | |||
Some devices are designed to deny users access to install or run | |||
modified versions of the software inside them, although the manufacturer | |||
can do so. This is fundamentally incompatible with the aim of | |||
protecting users' freedom to change the software. The systematic | |||
pattern of such abuse occurs in the area of products for individuals to | |||
use, which is precisely where it is most unacceptable. Therefore, we | |||
have designed this version of the GPL to prohibit the practice for those | |||
products. If such problems arise substantially in other domains, we | |||
stand ready to extend this provision to those domains in future versions | |||
of the GPL, as needed to protect the freedom of users. | |||
Finally, every program is threatened constantly by software patents. | |||
States should not allow patents to restrict development and use of | |||
software on general-purpose computers, but in those that do, we wish to | |||
avoid the special danger that patents applied to a free program could | |||
make it effectively proprietary. To prevent this, the GPL assures that | |||
patents cannot be used to render the program non-free. | |||
The precise terms and conditions for copying, distribution and | |||
modification follow. | |||
TERMS AND CONDITIONS | |||
0. Definitions. | |||
"This License" refers to version 3 of the GNU General Public License. | |||
"Copyright" also means copyright-like laws that apply to other kinds of | |||
works, such as semiconductor masks. | |||
"The Program" refers to any copyrightable work licensed under this | |||
License. Each licensee is addressed as "you". "Licensees" and | |||
"recipients" may be individuals or organizations. | |||
To "modify" a work means to copy from or adapt all or part of the work | |||
in a fashion requiring copyright permission, other than the making of an | |||
exact copy. The resulting work is called a "modified version" of the | |||
earlier work or a work "based on" the earlier work. | |||
A "covered work" means either the unmodified Program or a work based | |||
on the Program. | |||
To "propagate" a work means to do anything with it that, without | |||
permission, would make you directly or secondarily liable for | |||
infringement under applicable copyright law, except executing it on a | |||
computer or modifying a private copy. Propagation includes copying, | |||
distribution (with or without modification), making available to the | |||
public, and in some countries other activities as well. | |||
To "convey" a work means any kind of propagation that enables other | |||
parties to make or receive copies. Mere interaction with a user through | |||
a computer network, with no transfer of a copy, is not conveying. | |||
An interactive user interface displays "Appropriate Legal Notices" | |||
to the extent that it includes a convenient and prominently visible | |||
feature that (1) displays an appropriate copyright notice, and (2) | |||
tells the user that there is no warranty for the work (except to the | |||
extent that warranties are provided), that licensees may convey the | |||
work under this License, and how to view a copy of this License. If | |||
the interface presents a list of user commands or options, such as a | |||
menu, a prominent item in the list meets this criterion. | |||
1. Source Code. | |||
The "source code" for a work means the preferred form of the work | |||
for making modifications to it. "Object code" means any non-source | |||
form of a work. | |||
A "Standard Interface" means an interface that either is an official | |||
standard defined by a recognized standards body, or, in the case of | |||
interfaces specified for a particular programming language, one that | |||
is widely used among developers working in that language. | |||
The "System Libraries" of an executable work include anything, other | |||
than the work as a whole, that (a) is included in the normal form of | |||
packaging a Major Component, but which is not part of that Major | |||
Component, and (b) serves only to enable use of the work with that | |||
Major Component, or to implement a Standard Interface for which an | |||
implementation is available to the public in source code form. A | |||
"Major Component", in this context, means a major essential component | |||
(kernel, window system, and so on) of the specific operating system | |||
(if any) on which the executable work runs, or a compiler used to | |||
produce the work, or an object code interpreter used to run it. | |||
The "Corresponding Source" for a work in object code form means all | |||
the source code needed to generate, install, and (for an executable | |||
work) run the object code and to modify the work, including scripts to | |||
control those activities. However, it does not include the work's | |||
System Libraries, or general-purpose tools or generally available free | |||
programs which are used unmodified in performing those activities but | |||
which are not part of the work. For example, Corresponding Source | |||
includes interface definition files associated with source files for | |||
the work, and the source code for shared libraries and dynamically | |||
linked subprograms that the work is specifically designed to require, | |||
such as by intimate data communication or control flow between those | |||
subprograms and other parts of the work. | |||
The Corresponding Source need not include anything that users | |||
can regenerate automatically from other parts of the Corresponding | |||
Source. | |||
The Corresponding Source for a work in source code form is that | |||
same work. | |||
2. Basic Permissions. | |||
All rights granted under this License are granted for the term of | |||
copyright on the Program, and are irrevocable provided the stated | |||
conditions are met. This License explicitly affirms your unlimited | |||
permission to run the unmodified Program. The output from running a | |||
covered work is covered by this License only if the output, given its | |||
content, constitutes a covered work. This License acknowledges your | |||
rights of fair use or other equivalent, as provided by copyright law. | |||
You may make, run and propagate covered works that you do not | |||
convey, without conditions so long as your license otherwise remains | |||
in force. You may convey covered works to others for the sole purpose | |||
of having them make modifications exclusively for you, or provide you | |||
with facilities for running those works, provided that you comply with | |||
the terms of this License in conveying all material for which you do | |||
not control copyright. Those thus making or running the covered works | |||
for you must do so exclusively on your behalf, under your direction | |||
and control, on terms that prohibit them from making any copies of | |||
your copyrighted material outside their relationship with you. | |||
Conveying under any other circumstances is permitted solely under | |||
the conditions stated below. Sublicensing is not allowed; section 10 | |||
makes it unnecessary. | |||
3. Protecting Users' Legal Rights From Anti-Circumvention Law. | |||
No covered work shall be deemed part of an effective technological | |||
measure under any applicable law fulfilling obligations under article | |||
11 of the WIPO copyright treaty adopted on 20 December 1996, or | |||
similar laws prohibiting or restricting circumvention of such | |||
measures. | |||
When you convey a covered work, you waive any legal power to forbid | |||
circumvention of technological measures to the extent such circumvention | |||
is effected by exercising rights under this License with respect to | |||
the covered work, and you disclaim any intention to limit operation or | |||
modification of the work as a means of enforcing, against the work's | |||
users, your or third parties' legal rights to forbid circumvention of | |||
technological measures. | |||
4. Conveying Verbatim Copies. | |||
You may convey verbatim copies of the Program's source code as you | |||
receive it, in any medium, provided that you conspicuously and | |||
appropriately publish on each copy an appropriate copyright notice; | |||
keep intact all notices stating that this License and any | |||
non-permissive terms added in accord with section 7 apply to the code; | |||
keep intact all notices of the absence of any warranty; and give all | |||
recipients a copy of this License along with the Program. | |||
You may charge any price or no price for each copy that you convey, | |||
and you may offer support or warranty protection for a fee. | |||
5. Conveying Modified Source Versions. | |||
You may convey a work based on the Program, or the modifications to | |||
produce it from the Program, in the form of source code under the | |||
terms of section 4, provided that you also meet all of these conditions: | |||
a) The work must carry prominent notices stating that you modified | |||
it, and giving a relevant date. | |||
b) The work must carry prominent notices stating that it is | |||
released under this License and any conditions added under section | |||
7. This requirement modifies the requirement in section 4 to | |||
"keep intact all notices". | |||
c) You must license the entire work, as a whole, under this | |||
License to anyone who comes into possession of a copy. This | |||
License will therefore apply, along with any applicable section 7 | |||
additional terms, to the whole of the work, and all its parts, | |||
regardless of how they are packaged. This License gives no | |||
permission to license the work in any other way, but it does not | |||
invalidate such permission if you have separately received it. | |||
d) If the work has interactive user interfaces, each must display | |||
Appropriate Legal Notices; however, if the Program has interactive | |||
interfaces that do not display Appropriate Legal Notices, your | |||
work need not make them do so. | |||
A compilation of a covered work with other separate and independent | |||
works, which are not by their nature extensions of the covered work, | |||
and which are not combined with it such as to form a larger program, | |||
in or on a volume of a storage or distribution medium, is called an | |||
"aggregate" if the compilation and its resulting copyright are not | |||
used to limit the access or legal rights of the compilation's users | |||
beyond what the individual works permit. Inclusion of a covered work | |||
in an aggregate does not cause this License to apply to the other | |||
parts of the aggregate. | |||
6. Conveying Non-Source Forms. | |||
You may convey a covered work in object code form under the terms | |||
of sections 4 and 5, provided that you also convey the | |||
machine-readable Corresponding Source under the terms of this License, | |||
in one of these ways: | |||
a) Convey the object code in, or embodied in, a physical product | |||
(including a physical distribution medium), accompanied by the | |||
Corresponding Source fixed on a durable physical medium | |||
customarily used for software interchange. | |||
b) Convey the object code in, or embodied in, a physical product | |||
(including a physical distribution medium), accompanied by a | |||
written offer, valid for at least three years and valid for as | |||
long as you offer spare parts or customer support for that product | |||
model, to give anyone who possesses the object code either (1) a | |||
copy of the Corresponding Source for all the software in the | |||
product that is covered by this License, on a durable physical | |||
medium customarily used for software interchange, for a price no | |||
more than your reasonable cost of physically performing this | |||
conveying of source, or (2) access to copy the | |||
Corresponding Source from a network server at no charge. | |||
c) Convey individual copies of the object code with a copy of the | |||
written offer to provide the Corresponding Source. This | |||
alternative is allowed only occasionally and noncommercially, and | |||
only if you received the object code with such an offer, in accord | |||
with subsection 6b. | |||
d) Convey the object code by offering access from a designated | |||
place (gratis or for a charge), and offer equivalent access to the | |||
Corresponding Source in the same way through the same place at no | |||
further charge. You need not require recipients to copy the | |||
Corresponding Source along with the object code. If the place to | |||
copy the object code is a network server, the Corresponding Source | |||
may be on a different server (operated by you or a third party) | |||
that supports equivalent copying facilities, provided you maintain | |||
clear directions next to the object code saying where to find the | |||
Corresponding Source. Regardless of what server hosts the | |||
Corresponding Source, you remain obligated to ensure that it is | |||
available for as long as needed to satisfy these requirements. | |||
e) Convey the object code using peer-to-peer transmission, provided | |||
you inform other peers where the object code and Corresponding | |||
Source of the work are being offered to the general public at no | |||
charge under subsection 6d. | |||
A separable portion of the object code, whose source code is excluded | |||
from the Corresponding Source as a System Library, need not be | |||
included in conveying the object code work. | |||
A "User Product" is either (1) a "consumer product", which means any | |||
tangible personal property which is normally used for personal, family, | |||
or household purposes, or (2) anything designed or sold for incorporation | |||
into a dwelling. In determining whether a product is a consumer product, | |||
doubtful cases shall be resolved in favor of coverage. For a particular | |||
product received by a particular user, "normally used" refers to a | |||
typical or common use of that class of product, regardless of the status | |||
of the particular user or of the way in which the particular user | |||
actually uses, or expects or is expected to use, the product. A product | |||
is a consumer product regardless of whether the product has substantial | |||
commercial, industrial or non-consumer uses, unless such uses represent | |||
the only significant mode of use of the product. | |||
"Installation Information" for a User Product means any methods, | |||
procedures, authorization keys, or other information required to install | |||
and execute modified versions of a covered work in that User Product from | |||
a modified version of its Corresponding Source. The information must | |||
suffice to ensure that the continued functioning of the modified object | |||
code is in no case prevented or interfered with solely because | |||
modification has been made. | |||
If you convey an object code work under this section in, or with, or | |||
specifically for use in, a User Product, and the conveying occurs as | |||
part of a transaction in which the right of possession and use of the | |||
User Product is transferred to the recipient in perpetuity or for a | |||
fixed term (regardless of how the transaction is characterized), the | |||
Corresponding Source conveyed under this section must be accompanied | |||
by the Installation Information. But this requirement does not apply | |||
if neither you nor any third party retains the ability to install | |||
modified object code on the User Product (for example, the work has | |||
been installed in ROM). | |||
The requirement to provide Installation Information does not include a | |||
requirement to continue to provide support service, warranty, or updates | |||
for a work that has been modified or installed by the recipient, or for | |||
the User Product in which it has been modified or installed. Access to a | |||
network may be denied when the modification itself materially and | |||
adversely affects the operation of the network or violates the rules and | |||
protocols for communication across the network. | |||
Corresponding Source conveyed, and Installation Information provided, | |||
in accord with this section must be in a format that is publicly | |||
documented (and with an implementation available to the public in | |||
source code form), and must require no special password or key for | |||
unpacking, reading or copying. | |||
7. Additional Terms. | |||
"Additional permissions" are terms that supplement the terms of this | |||
License by making exceptions from one or more of its conditions. | |||
Additional permissions that are applicable to the entire Program shall | |||
be treated as though they were included in this License, to the extent | |||
that they are valid under applicable law. If additional permissions | |||
apply only to part of the Program, that part may be used separately | |||
under those permissions, but the entire Program remains governed by | |||
this License without regard to the additional permissions. | |||
When you convey a copy of a covered work, you may at your option | |||
remove any additional permissions from that copy, or from any part of | |||
it. (Additional permissions may be written to require their own | |||
removal in certain cases when you modify the work.) You may place | |||
additional permissions on material, added by you to a covered work, | |||
for which you have or can give appropriate copyright permission. | |||
Notwithstanding any other provision of this License, for material you | |||
add to a covered work, you may (if authorized by the copyright holders of | |||
that material) supplement the terms of this License with terms: | |||
a) Disclaiming warranty or limiting liability differently from the | |||
terms of sections 15 and 16 of this License; or | |||
b) Requiring preservation of specified reasonable legal notices or | |||
author attributions in that material or in the Appropriate Legal | |||
Notices displayed by works containing it; or | |||
c) Prohibiting misrepresentation of the origin of that material, or | |||
requiring that modified versions of such material be marked in | |||
reasonable ways as different from the original version; or | |||
d) Limiting the use for publicity purposes of names of licensors or | |||
authors of the material; or | |||
e) Declining to grant rights under trademark law for use of some | |||
trade names, trademarks, or service marks; or | |||
f) Requiring indemnification of licensors and authors of that | |||
material by anyone who conveys the material (or modified versions of | |||
it) with contractual assumptions of liability to the recipient, for | |||
any liability that these contractual assumptions directly impose on | |||
those licensors and authors. | |||
All other non-permissive additional terms are considered "further | |||
restrictions" within the meaning of section 10. If the Program as you | |||
received it, or any part of it, contains a notice stating that it is | |||
governed by this License along with a term that is a further | |||
restriction, you may remove that term. If a license document contains | |||
a further restriction but permits relicensing or conveying under this | |||
License, you may add to a covered work material governed by the terms | |||
of that license document, provided that the further restriction does | |||
not survive such relicensing or conveying. | |||
If you add terms to a covered work in accord with this section, you | |||
must place, in the relevant source files, a statement of the | |||
additional terms that apply to those files, or a notice indicating | |||
where to find the applicable terms. | |||
Additional terms, permissive or non-permissive, may be stated in the | |||
form of a separately written license, or stated as exceptions; | |||
the above requirements apply either way. | |||
8. Termination. | |||
You may not propagate or modify a covered work except as expressly | |||
provided under this License. Any attempt otherwise to propagate or | |||
modify it is void, and will automatically terminate your rights under | |||
this License (including any patent licenses granted under the third | |||
paragraph of section 11). | |||
However, if you cease all violation of this License, then your | |||
license from a particular copyright holder is reinstated (a) | |||
provisionally, unless and until the copyright holder explicitly and | |||
finally terminates your license, and (b) permanently, if the copyright | |||
holder fails to notify you of the violation by some reasonable means | |||
prior to 60 days after the cessation. | |||
Moreover, your license from a particular copyright holder is | |||
reinstated permanently if the copyright holder notifies you of the | |||
violation by some reasonable means, this is the first time you have | |||
received notice of violation of this License (for any work) from that | |||
copyright holder, and you cure the violation prior to 30 days after | |||
your receipt of the notice. | |||
Termination of your rights under this section does not terminate the | |||
licenses of parties who have received copies or rights from you under | |||
this License. If your rights have been terminated and not permanently | |||
reinstated, you do not qualify to receive new licenses for the same | |||
material under section 10. | |||
9. Acceptance Not Required for Having Copies. | |||
You are not required to accept this License in order to receive or | |||
run a copy of the Program. Ancillary propagation of a covered work | |||
occurring solely as a consequence of using peer-to-peer transmission | |||
to receive a copy likewise does not require acceptance. However, | |||
nothing other than this License grants you permission to propagate or | |||
modify any covered work. These actions infringe copyright if you do | |||
not accept this License. Therefore, by modifying or propagating a | |||
covered work, you indicate your acceptance of this License to do so. | |||
10. Automatic Licensing of Downstream Recipients. | |||
Each time you convey a covered work, the recipient automatically | |||
receives a license from the original licensors, to run, modify and | |||
propagate that work, subject to this License. You are not responsible | |||
for enforcing compliance by third parties with this License. | |||
An "entity transaction" is a transaction transferring control of an | |||
organization, or substantially all assets of one, or subdividing an | |||
organization, or merging organizations. If propagation of a covered | |||
work results from an entity transaction, each party to that | |||
transaction who receives a copy of the work also receives whatever | |||
licenses to the work the party's predecessor in interest had or could | |||
give under the previous paragraph, plus a right to possession of the | |||
Corresponding Source of the work from the predecessor in interest, if | |||
the predecessor has it or can get it with reasonable efforts. | |||
You may not impose any further restrictions on the exercise of the | |||
rights granted or affirmed under this License. For example, you may | |||
not impose a license fee, royalty, or other charge for exercise of | |||
rights granted under this License, and you may not initiate litigation | |||
(including a cross-claim or counterclaim in a lawsuit) alleging that | |||
any patent claim is infringed by making, using, selling, offering for | |||
sale, or importing the Program or any portion of it. | |||
11. Patents. | |||
A "contributor" is a copyright holder who authorizes use under this | |||
License of the Program or a work on which the Program is based. The | |||
work thus licensed is called the contributor's "contributor version". | |||
A contributor's "essential patent claims" are all patent claims | |||
owned or controlled by the contributor, whether already acquired or | |||
hereafter acquired, that would be infringed by some manner, permitted | |||
by this License, of making, using, or selling its contributor version, | |||
but do not include claims that would be infringed only as a | |||
consequence of further modification of the contributor version. For | |||
purposes of this definition, "control" includes the right to grant | |||
patent sublicenses in a manner consistent with the requirements of | |||
this License. | |||
Each contributor grants you a non-exclusive, worldwide, royalty-free | |||
patent license under the contributor's essential patent claims, to | |||
make, use, sell, offer for sale, import and otherwise run, modify and | |||
propagate the contents of its contributor version. | |||
In the following three paragraphs, a "patent license" is any express | |||
agreement or commitment, however denominated, not to enforce a patent | |||
(such as an express permission to practice a patent or covenant not to | |||
sue for patent infringement). To "grant" such a patent license to a | |||
party means to make such an agreement or commitment not to enforce a | |||
patent against the party. | |||
If you convey a covered work, knowingly relying on a patent license, | |||
and the Corresponding Source of the work is not available for anyone | |||
to copy, free of charge and under the terms of this License, through a | |||
publicly available network server or other readily accessible means, | |||
then you must either (1) cause the Corresponding Source to be so | |||
available, or (2) arrange to deprive yourself of the benefit of the | |||
patent license for this particular work, or (3) arrange, in a manner | |||
consistent with the requirements of this License, to extend the patent | |||
license to downstream recipients. "Knowingly relying" means you have | |||
actual knowledge that, but for the patent license, your conveying the | |||
covered work in a country, or your recipient's use of the covered work | |||
in a country, would infringe one or more identifiable patents in that | |||
country that you have reason to believe are valid. | |||
If, pursuant to or in connection with a single transaction or | |||
arrangement, you convey, or propagate by procuring conveyance of, a | |||
covered work, and grant a patent license to some of the parties | |||
receiving the covered work authorizing them to use, propagate, modify | |||
or convey a specific copy of the covered work, then the patent license | |||
you grant is automatically extended to all recipients of the covered | |||
work and works based on it. | |||
A patent license is "discriminatory" if it does not include within | |||
the scope of its coverage, prohibits the exercise of, or is | |||
conditioned on the non-exercise of one or more of the rights that are | |||
specifically granted under this License. You may not convey a covered | |||
work if you are a party to an arrangement with a third party that is | |||
in the business of distributing software, under which you make payment | |||
to the third party based on the extent of your activity of conveying | |||
the work, and under which the third party grants, to any of the | |||
parties who would receive the covered work from you, a discriminatory | |||
patent license (a) in connection with copies of the covered work | |||
conveyed by you (or copies made from those copies), or (b) primarily | |||
for and in connection with specific products or compilations that | |||
contain the covered work, unless you entered into that arrangement, | |||
or that patent license was granted, prior to 28 March 2007. | |||
Nothing in this License shall be construed as excluding or limiting | |||
any implied license or other defenses to infringement that may | |||
otherwise be available to you under applicable patent law. | |||
12. No Surrender of Others' Freedom. | |||
If conditions are imposed on you (whether by court order, agreement or | |||
otherwise) that contradict the conditions of this License, they do not | |||
excuse you from the conditions of this License. If you cannot convey a | |||
covered work so as to satisfy simultaneously your obligations under this | |||
License and any other pertinent obligations, then as a consequence you may | |||
not convey it at all. For example, if you agree to terms that obligate you | |||
to collect a royalty for further conveying from those to whom you convey | |||
the Program, the only way you could satisfy both those terms and this | |||
License would be to refrain entirely from conveying the Program. | |||
13. Use with the GNU Affero General Public License. | |||
Notwithstanding any other provision of this License, you have | |||
permission to link or combine any covered work with a work licensed | |||
under version 3 of the GNU Affero General Public License into a single | |||
combined work, and to convey the resulting work. The terms of this | |||
License will continue to apply to the part which is the covered work, | |||
but the special requirements of the GNU Affero General Public License, | |||
section 13, concerning interaction through a network will apply to the | |||
combination as such. | |||
14. Revised Versions of this License. | |||
The Free Software Foundation may publish revised and/or new versions of | |||
the GNU General Public License from time to time. Such new versions will | |||
be similar in spirit to the present version, but may differ in detail to | |||
address new problems or concerns. | |||
Each version is given a distinguishing version number. If the | |||
Program specifies that a certain numbered version of the GNU General | |||
Public License "or any later version" applies to it, you have the | |||
option of following the terms and conditions either of that numbered | |||
version or of any later version published by the Free Software | |||
Foundation. If the Program does not specify a version number of the | |||
GNU General Public License, you may choose any version ever published | |||
by the Free Software Foundation. | |||
If the Program specifies that a proxy can decide which future | |||
versions of the GNU General Public License can be used, that proxy's | |||
public statement of acceptance of a version permanently authorizes you | |||
to choose that version for the Program. | |||
Later license versions may give you additional or different | |||
permissions. However, no additional obligations are imposed on any | |||
author or copyright holder as a result of your choosing to follow a | |||
later version. | |||
15. Disclaimer of Warranty. | |||
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY | |||
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT | |||
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY | |||
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, | |||
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | |||
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM | |||
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF | |||
ALL NECESSARY SERVICING, REPAIR OR CORRECTION. | |||
16. Limitation of Liability. | |||
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING | |||
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS | |||
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY | |||
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE | |||
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF | |||
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD | |||
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), | |||
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF | |||
SUCH DAMAGES. | |||
17. Interpretation of Sections 15 and 16. | |||
If the disclaimer of warranty and limitation of liability provided | |||
above cannot be given local legal effect according to their terms, | |||
reviewing courts shall apply local law that most closely approximates | |||
an absolute waiver of all civil liability in connection with the | |||
Program, unless a warranty or assumption of liability accompanies a | |||
copy of the Program in return for a fee. | |||
END OF TERMS AND CONDITIONS | |||
How to Apply These Terms to Your New Programs | |||
If you develop a new program, and you want it to be of the greatest | |||
possible use to the public, the best way to achieve this is to make it | |||
free software which everyone can redistribute and change under these terms. | |||
To do so, attach the following notices to the program. It is safest | |||
to attach them to the start of each source file to most effectively | |||
state the exclusion of warranty; and each file should have at least | |||
the "copyright" line and a pointer to where the full notice is found. | |||
{one line to give the program's name and a brief idea of what it does.} | |||
Copyright (C) {year} {name of author} | |||
This program is free software: you can redistribute it and/or modify | |||
it under the terms of the GNU General Public License as published by | |||
the Free Software Foundation, either version 3 of the License, or | |||
(at your option) any later version. | |||
This program is distributed in the hope that it will be useful, | |||
but WITHOUT ANY WARRANTY; without even the implied warranty of | |||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |||
GNU General Public License for more details. | |||
You should have received a copy of the GNU General Public License | |||
along with this program. If not, see <http://www.gnu.org/licenses/>. | |||
Also add information on how to contact you by electronic and paper mail. | |||
If the program does terminal interaction, make it output a short | |||
notice like this when it starts in an interactive mode: | |||
{project} Copyright (C) {year} {fullname} | |||
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. | |||
This is free software, and you are welcome to redistribute it | |||
under certain conditions; type `show c' for details. | |||
The hypothetical commands `show w' and `show c' should show the appropriate | |||
parts of the General Public License. Of course, your program's commands | |||
might be different; for a GUI interface, you would use an "about box". | |||
You should also get your employer (if you work as a programmer) or school, | |||
if any, to sign a "copyright disclaimer" for the program, if necessary. | |||
For more information on this, and how to apply and follow the GNU GPL, see | |||
<http://www.gnu.org/licenses/>. | |||
The GNU General Public License does not permit incorporating your program | |||
into proprietary programs. If your program is a subroutine library, you | |||
may consider it more useful to permit linking proprietary applications with | |||
the library. If this is what you want to do, use the GNU Lesser General | |||
Public License instead of this License. But first, please read | |||
<http://www.gnu.org/philosophy/why-not-lgpl.html>. | |||
@@ -0,0 +1,5 @@ | |||
a history of the domino problemo | |||
note that this code produces files in two subfolders | |||
the supercollider code makes png files in a subfolder called "visualization" | |||
the klayout code reads the above files and outputs gds files in a subfolder called "gds" |
@@ -0,0 +1 @@ | |||
*.gds |
@@ -0,0 +1,38 @@ | |||
import pya | |||
import os | |||
base_dir = os.path.dirname(os.path.abspath(__file__)) | |||
ly1 = pya.Layout() | |||
ly1.read(os.path.join(base_dir, "..", "gds", "alignment_marks_overlapped.gds")) | |||
ly2 = pya.Layout() | |||
ly2.read(os.path.join(base_dir, "..", "gds", "image_overlapped.gds")) | |||
ly1_top_cell = ly1.top_cell() | |||
tmp = ly1.create_cell("Image") | |||
tmp.copy_tree(ly2.top_cell()) | |||
ly1_top_cell.insert(pya.CellInstArray(tmp.cell_index(), pya.Trans(3, False, 0, 0))) | |||
ly1.rename_cell(ly1_top_cell.cell_index(), "All") | |||
ly1_top_cell.flatten(1) | |||
ly1.write(os.path.join(base_dir, "..", "gds", "image_with_alignment_marks_overlapped.gds")) | |||
ly1 = pya.Layout() | |||
ly1.read(os.path.join(base_dir, "..", "gds", "inverted_tonality", "alignment_marks_overlapped_inverse.gds")) | |||
ly2 = pya.Layout() | |||
ly2.read(os.path.join(base_dir, "..", "gds", "inverted_tonality", "image_overlapped_inverse.gds")) | |||
ly2.top_cell().transform_into(pya.Trans(3, False, 0, 0)) | |||
processor = pya.ShapeProcessor() | |||
processor.boolean(ly1, ly1.top_cell(), 0, ly2, ly2.top_cell(), 0, ly1.top_cell().shapes(0), 1, False, False, True) | |||
processor = pya.ShapeProcessor() | |||
processor.boolean(ly1, ly1.top_cell(), 1, ly2, ly2.top_cell(), 1, ly1.top_cell().shapes(1), 1, False, False, True) | |||
ly1.write(os.path.join(base_dir, "..", "gds", "inverted_tonality", "image_with_alignment_marks_overlapped_inverse.gds")) |
@@ -0,0 +1,449 @@ | |||
import pya | |||
import os | |||
base_dir = os.path.dirname(os.path.abspath(__file__)) | |||
# init vars | |||
pixel_size = 20 | |||
shift_mult = 5 | |||
image_size = 4266 * pixel_size * 100 #calculate this directly (4266 and 4242 for shift_mult 5 and 3, respectively) | |||
image_size_half = image_size / 2 | |||
image_dist = (shift_mult * 3 * 2 + 2) * pixel_size * 100 | |||
object_border = 0 | |||
#print(image_dist) | |||
# create layout | |||
layout = pya.Layout() | |||
layout.dbu = 0.01 | |||
top = layout.create_cell("Top") | |||
layer1_index = layout.insert_layer(pya.LayerInfo.new(1, 0)) | |||
layer2_index = layout.insert_layer(pya.LayerInfo.new(2, 0)) | |||
layer3_index = layout.insert_layer(pya.LayerInfo.new(3, 0)) | |||
layer4_index = layout.insert_layer(pya.LayerInfo.new(4, 0)) | |||
layer5_index = layout.insert_layer(pya.LayerInfo.new(5, 0)) | |||
# wafer limits | |||
wafer = layout.create_cell("Wafer") | |||
wafer_circle_limit = layout.create_cell("CIRCLE", "Basic", | |||
{ "actual_radius": 75000, "npoints": 256, "layer": pya.LayerInfo(5, 0)} ) | |||
wafer1_cell_border = layout.create_cell("DONUT", "Basic", | |||
{ "actual_radius1": 67500, "actual_radius2": 75000, "npoints": 256, "layer": pya.LayerInfo(1, 0)} ) | |||
wafer2_cell_border = layout.create_cell("DONUT", "Basic", | |||
{ "actual_radius1": 67500, "actual_radius2": 75000, "npoints": 256, "layer": pya.LayerInfo(2, 0)} ) | |||
wafer.insert(pya.CellInstArray(wafer_circle_limit.cell_index(), pya.Trans(0, 0))) | |||
wafer.insert(pya.CellInstArray(wafer1_cell_border.cell_index(), pya.Trans(0, 0))) | |||
wafer.insert(pya.CellInstArray(wafer2_cell_border.cell_index(), pya.Trans(0, 0))) | |||
limit_region = pya.Region(wafer_circle_limit.begin_shapes_rec(layer5_index)) | |||
wafer1_fill_region = pya.Region() | |||
wafer1_fill_region.insert(pya.Box(-7500000, -6850000 + 1750000, 7500000, -1 * (6850000 + 1850000))) #mount area fill | |||
frame_width = 300000 | |||
square_width = 2000000 | |||
wafer1_fill_region.insert(pya.Box(image_size_half, image_size_half, image_size_half + square_width, image_size_half + square_width)) #encoder | |||
wafer1_fill_region.insert(pya.Box(image_size_half, -1 * image_size_half, image_size_half + square_width, -1 * (image_size_half + square_width))) #encoder | |||
wafer1_fill_region.insert(pya.Box(-1 * image_size_half, image_size_half, -1 * (image_size_half + square_width), image_size_half + square_width)) #encoder | |||
wafer1_fill_region.insert(pya.Box(-1 * image_size_half, -1 * image_size_half, -1 * (image_size_half + square_width), -1 * (image_size_half + square_width))) #encoder | |||
wafer.shapes(layer1_index).insert(limit_region & wafer1_fill_region) | |||
wafer2_fill_region = pya.Region() | |||
wafer2_fill_region.insert(pya.Box(-7500000, 6850000 - 1750000, 7500000, 6850000 + 1850000)) #mount area fill | |||
wafer2_fill_region.insert(pya.Box(image_size_half, image_size_half, image_size_half + square_width, image_size_half + square_width)) #encoder | |||
wafer2_fill_region.insert(pya.Box(image_size_half, -1 * image_size_half, image_size_half + square_width, -1 * (image_size_half + square_width))) #encoder | |||
wafer2_fill_region.insert(pya.Box(-1 * image_size_half, image_size_half, -1 * (image_size_half + square_width), image_size_half + square_width)) #encoder | |||
wafer2_fill_region.insert(pya.Box(-1 * image_size_half, -1 * image_size_half, -1 * (image_size_half + square_width), -1 * (image_size_half + square_width))) #encoder | |||
wafer.shapes(layer2_index).insert(limit_region & wafer2_fill_region) | |||
wafer.shapes(layer3_index).insert(pya.Box(-7500000, -6850000, 7500000, 6850000 - 1850000)) #printable area wafer 1 | |||
wafer.shapes(layer4_index).insert(pya.Box(-7500000, 6850000, 7500000, -1 * (6850000 - 1850000))) #printable area wafer 2 | |||
top.insert(pya.CellInstArray(wafer.cell_index(), pya.Trans(0, 0))) | |||
layout.rename_cell(wafer.cell_index(), "Wafer_Border") | |||
# def for circ grating | |||
def gen_circ_grating(pitch, width, square_size, name): | |||
#create grating archetype for circ grating | |||
circ_grating = layout.create_cell("Circ_Grating") | |||
circ_grating_inv = layout.create_cell("Circ_Grating_Inv") | |||
i = 0 | |||
while (i * pitch) < (8000): | |||
donut = layout.create_cell("DONUT", "Basic", | |||
{ "actual_radius1": (i * pitch), "actual_radius2": (i * pitch + width), "npoints": 256, "layer": pya.LayerInfo(1, 0)} ) | |||
circ_grating.insert(pya.CellInstArray(donut.cell_index(), pya.Trans(0, 0))) | |||
i = i + 1 | |||
i = 0 | |||
while (i * pitch) < (8000): | |||
donut = layout.create_cell("DONUT", "Basic", | |||
{ "actual_radius1": (i * pitch) + width, "actual_radius2": (i * pitch + width) + width, "npoints": 256, "layer": pya.LayerInfo(2, 0)} ) | |||
circ_grating_inv.insert(pya.CellInstArray(donut.cell_index(), pya.Trans(0, 0))) | |||
i = i + 1 | |||
circ_grating_clip = layout.clip(circ_grating.cell_index(), pya.Box(-1 * square_size, -1 * square_size, square_size, square_size)) | |||
circ_grating_inv_clip = layout.clip(circ_grating_inv.cell_index(), pya.Box(-1 * square_size, -1 * square_size, square_size, square_size)) | |||
circ_grating.delete() | |||
circ_grating_inv.delete() | |||
layout.rename_cell(circ_grating_clip, name + "_Clip") | |||
layout.rename_cell(circ_grating_inv_clip, name + "_Inv_Clip") | |||
return [circ_grating_clip, circ_grating_inv_clip] | |||
# verniers | |||
linear_grating_vernier = layout.create_cell("Vernier") | |||
base_period = image_size_half - 500000 | |||
revealing_period = image_dist | |||
velocity_ratio = 1 | |||
pitch1 = (base_period * (revealing_period / velocity_ratio)) / (base_period - (revealing_period / velocity_ratio)) | |||
pitch2 = revealing_period / velocity_ratio | |||
opening1 = 4000 | |||
#print(pitch1) | |||
#print(pitch2) | |||
frame_width = 300000 | |||
for i in range(-1 * int((image_size_half) / pitch1), int((image_size_half) / pitch1)): | |||
line = layout.create_cell("Line") | |||
line.shapes(layer2_index).insert(pya.Box(opening1 / 2, -1 * frame_width, pitch1 - opening1 / 2, 0)) | |||
linear_grating_vernier.insert(pya.CellInstArray(line.cell_index(), pya.Trans(i * pitch1, 0))) | |||
for i in range(-1 * int((image_size_half - image_dist) / pitch2), int((image_size_half - image_dist) / pitch2)): | |||
line = layout.create_cell("Line") | |||
line.shapes(layer1_index).insert(pya.Box(opening1 / 2, -1 * frame_width, pitch2 - opening1 / 2, 0)) | |||
linear_grating_vernier.insert(pya.CellInstArray(line.cell_index(), pya.Trans(i * pitch2, 0))) | |||
base_period = -1 * (image_size_half - 500000) | |||
revealing_period = image_dist | |||
velocity_ratio = 5 | |||
pitch3 = (base_period * (revealing_period / velocity_ratio)) / (base_period - (revealing_period / velocity_ratio)) | |||
pitch4 = revealing_period / velocity_ratio | |||
opening2 = 800 | |||
for i in range(-1 * int(image_size_half / pitch3), int(image_size_half / pitch3)): | |||
line = layout.create_cell("Line") | |||
line.shapes(layer2_index).insert(pya.Box(opening2 / 2, 0, pitch3 - opening2 / 2, frame_width)) | |||
linear_grating_vernier.insert(pya.CellInstArray(line.cell_index(), pya.Trans(i * pitch3, 0))) | |||
for i in range(-1 * int((image_size_half - image_dist) / pitch4), int((image_size_half - image_dist) / pitch4)): | |||
line = layout.create_cell("Line") | |||
line.shapes(layer1_index).insert(pya.Box(opening2 / 2, 0, pitch4 - opening2 / 2, frame_width)) | |||
linear_grating_vernier.insert(pya.CellInstArray(line.cell_index(), pya.Trans(i * pitch4, 0))) | |||
line = layout.create_cell("Line") | |||
line.shapes(layer2_index).insert(pya.Box(image_size_half - (2 * image_dist), -1 * frame_width, image_size_half, 0)) | |||
line.shapes(layer2_index).insert(pya.Box(-1 * (image_size_half - (2 * image_dist)), -1 * frame_width, -1 * (image_size_half), 0)) | |||
line.shapes(layer2_index).insert(pya.Box(image_size_half - (2 * image_dist), image_dist, image_size_half, image_dist + frame_width)) | |||
line.shapes(layer2_index).insert(pya.Box(-1 * (image_size_half - (2 * image_dist)), image_dist, -1 * (image_size_half), image_dist + frame_width)) | |||
#These four lines can be taken away to get rid of the bounding black out | |||
line.shapes(layer2_index).insert(pya.Box(-1 * image_size_half, image_dist, image_size_half, 0 - image_dist)) | |||
line.shapes(layer2_index).insert(pya.Box(-1 * image_size_half, -1 * (frame_width - image_dist), image_size_half, -1 * (frame_width + image_dist))) | |||
line.shapes(layer2_index).insert(pya.Box(-1 * image_size_half, 0, image_size_half, image_dist)) | |||
line.shapes(layer2_index).insert(pya.Box(-1 * image_size_half, frame_width + (1 * image_dist), image_size_half, frame_width - image_dist)) | |||
linear_grating_vernier.insert(pya.CellInstArray(line.cell_index(), pya.Trans(0, 0))) | |||
line = layout.create_cell("Line") | |||
line.shapes(layer1_index).insert(pya.Box(image_size_half - image_dist, -1 * frame_width, image_size_half - (2 * image_dist), 0)) | |||
line.shapes(layer1_index).insert(pya.Box(-1 * (image_size_half - image_dist), -1 * frame_width, -1 * (image_size_half - (2 * image_dist)), 0)) | |||
line.shapes(layer1_index).insert(pya.Box(image_size_half - image_dist, 0, image_size_half - (2 * image_dist), frame_width)) | |||
line.shapes(layer1_index).insert(pya.Box(-1 * (image_size_half - image_dist), 0, -1 * (image_size_half - (2 * image_dist)), frame_width)) | |||
linear_grating_vernier.insert(pya.CellInstArray(line.cell_index(), pya.Trans(0, 0))) | |||
vernier_extent = image_size_half + object_border + frame_width + image_dist | |||
top.insert(pya.CellInstArray(linear_grating_vernier.cell_index(), pya.Trans(3, False, vernier_extent, 0))) | |||
top.insert(pya.CellInstArray(linear_grating_vernier.cell_index(), pya.Trans(1, False, -1 * vernier_extent, 0))) | |||
top.insert(pya.CellInstArray(linear_grating_vernier.cell_index(), pya.Trans(0, False, 0, vernier_extent))) | |||
top.insert(pya.CellInstArray(linear_grating_vernier.cell_index(), pya.Trans(2, False, 0, -1 * vernier_extent))) | |||
vernier_extent = vernier_extent + frame_width + image_dist | |||
# linear grating unison for rotational alignment | |||
linear_grating_uni = layout.create_cell("Linear_Grating_Uni") | |||
pitch = 2000 | |||
line_width = 1000 | |||
frame_width = 300000 / 2 | |||
line_length = image_size_half - 500000 | |||
i = -1 * frame_width | |||
while (i) < (frame_width): | |||
line = layout.create_cell("Line") | |||
line.shapes(layer1_index).insert(pya.Box(0, -1 * line_length, line_width, line_length)) | |||
linear_grating_uni.insert(pya.CellInstArray(line.cell_index(), pya.Trans(i, 0))) | |||
i = i + pitch | |||
i = -1 * frame_width | |||
shift = line_width | |||
while (i) < (frame_width): | |||
line = layout.create_cell("Line") | |||
line.shapes(layer2_index).insert(pya.Box(0, -1 * line_length, line_width, line_length)) | |||
linear_grating_uni.insert(pya.CellInstArray(line.cell_index(), pya.Trans(i + shift, 0))) | |||
i = i + pitch | |||
unison_rot_extent = vernier_extent + object_border + frame_width + image_dist | |||
top.insert(pya.CellInstArray(linear_grating_uni.cell_index(), pya.Trans(2, False, unison_rot_extent, 0))) | |||
top.insert(pya.CellInstArray(linear_grating_uni.cell_index(), pya.Trans(0, False, -1 * unison_rot_extent, 0))) | |||
unison_rot_extent = unison_rot_extent + frame_width + image_dist | |||
# 9 * 9 grid with larger squares | |||
circ_grating_square_array_2 = layout.create_cell("Circ_Grating_Square_Array_2") | |||
square_dist = 400000 | |||
pitch = 10 | |||
width = 5 | |||
square_size = (square_dist / 2) - 20000 | |||
[circ_grating_square_array_clip, circ_grating_square_array_inv_clip] = gen_circ_grating(pitch, width, square_size, "Circ_Grating_2") | |||
for r in range(-1, 2): | |||
for c in range(-1, 2): | |||
circ_grating_square_array_2.insert(pya.CellInstArray(circ_grating_square_array_clip, pya.Trans(0, False, square_dist * r, square_dist * c))) | |||
circ_grating_square_array_2.insert(pya.CellInstArray(circ_grating_square_array_inv_clip, pya.Trans(0, False, square_dist * r + (r * image_dist), square_dist * c + (c * image_dist)))) | |||
grid_extent = unison_rot_extent + square_size + square_dist + image_dist | |||
y_offset = square_dist + image_dist + (square_size) | |||
top.insert(pya.CellInstArray(circ_grating_square_array_2.cell_index(), pya.Trans(2, False, grid_extent, 0))) | |||
top.insert(pya.CellInstArray(circ_grating_square_array_2.cell_index(), pya.Trans(0, False, -1 * grid_extent, 0))) | |||
# verniers md course | |||
linear_grating_vernier_md_course = layout.create_cell("Vernier_md_course") | |||
square_size = 650000 | |||
fray = 0 | |||
line_length = square_size / 2 + fray | |||
velocity_ratio = 2 | |||
pitch1 = ((square_size * 1) * (image_dist / velocity_ratio)) / ((square_size * 1) - (image_dist / velocity_ratio)) | |||
pitch2 = image_dist / velocity_ratio | |||
opening = 8000 | |||
for i in range(-1 * int(square_size / 2 / pitch1) - 0, int(square_size / 2 / pitch1) + 0): | |||
line = layout.create_cell("Line") | |||
line.shapes(layer2_index).insert(pya.Box(opening / 2, -1 * line_length, pitch1 - opening / 2, line_length)) | |||
linear_grating_vernier_md_course.insert(pya.CellInstArray(line.cell_index(), pya.Trans(i * pitch1, 0))) | |||
linear_grating_vernier_md_course.insert(pya.CellInstArray(line.cell_index(), pya.Trans(1, False, 0, (i * pitch1)))) | |||
for i in range(-1 * int(square_size / 2 / pitch2) - 0, int(square_size / 2 / pitch2) + 0): | |||
line = layout.create_cell("Line") | |||
line.shapes(layer1_index).insert(pya.Box(opening / 2, -1 * line_length, pitch2 - opening / 2, line_length)) | |||
linear_grating_vernier_md_course.insert(pya.CellInstArray(line.cell_index(), pya.Trans(i * pitch2, 0))) | |||
linear_grating_vernier_md_course.insert(pya.CellInstArray(line.cell_index(), pya.Trans(1, False, 0, (i * pitch2)))) | |||
line = layout.create_cell("Line") | |||
line.shapes(layer2_index).insert(pya.Box(-1 * (square_size / 2 + (1 * image_dist)), square_size / 2 - image_dist, square_size / 2 + (1 * image_dist), square_size / 2 + (1 * image_dist))) | |||
linear_grating_vernier_md_course.insert(pya.CellInstArray(line.cell_index(), pya.Trans(0, 0))) | |||
line = layout.create_cell("Line") | |||
line.shapes(layer2_index).insert(pya.Box(-1 * (square_size / 2 + (1 * image_dist)), square_size / 2 - image_dist, square_size / 2 + (0 * image_dist), square_size / 2 + (1 * image_dist))) | |||
#linear_grating_vernier_md_course.insert(pya.CellInstArray(line.cell_index(), pya.Trans(0, 0))) | |||
linear_grating_vernier_md_course.insert(pya.CellInstArray(line.cell_index(), pya.Trans(1, False, 0, 0))) | |||
linear_grating_vernier_md_course.insert(pya.CellInstArray(line.cell_index(), pya.Trans(2, False, 0, 0))) | |||
linear_grating_vernier_md_course.insert(pya.CellInstArray(line.cell_index(), pya.Trans(1, True, 0, 0))) | |||
line = layout.create_cell("Line") | |||
line.shapes(layer1_index).insert(pya.Box(-1 * (square_size / 2 + (1 * image_dist)), square_size / 2, square_size / 2 + (1 * image_dist), square_size / 2 + (0 * image_dist))) | |||
linear_grating_vernier_md_course.insert(pya.CellInstArray(line.cell_index(), pya.Trans(0, 0))) | |||
linear_grating_vernier_md_course.insert(pya.CellInstArray(line.cell_index(), pya.Trans(1, False, 0, 0))) | |||
linear_grating_vernier_md_course.insert(pya.CellInstArray(line.cell_index(), pya.Trans(2, False, 0, 0))) | |||
linear_grating_vernier_md_course.insert(pya.CellInstArray(line.cell_index(), pya.Trans(3, False, 0, 0))) | |||
triangle = layout.create_cell("Triangle") | |||
triangle.shapes(layer2_index).insert(pya.Polygon([pya.Point(-45000, -1 * image_dist), pya.Point(45000, -1 * image_dist), pya.Point(0, 0)])) | |||
linear_grating_vernier_md_course.insert(pya.CellInstArray(triangle.cell_index(), pya.Trans(0, False, 0, -1 * (square_size / 2 + (image_dist * 1))))) | |||
linear_grating_vernier_md_course.insert(pya.CellInstArray(triangle.cell_index(), pya.Trans(1, False, (square_size / 2 + (image_dist * 1)), 0))) | |||
grid_extent = unison_rot_extent + (square_size / 2) + (image_dist * 1) | |||
y_offset = y_offset + (square_size / 2) + (image_dist * 3) | |||
top.insert(pya.CellInstArray(linear_grating_vernier_md_course.cell_index(), pya.Trans(0, False, (grid_extent + fray), (y_offset + fray)))) | |||
top.insert(pya.CellInstArray(linear_grating_vernier_md_course.cell_index(), pya.Trans(0, True, (grid_extent + fray), -1 * (y_offset + fray)))) | |||
top.insert(pya.CellInstArray(linear_grating_vernier_md_course.cell_index(), pya.Trans(2, False, -1 * (grid_extent + fray), -1 * (y_offset + fray)))) | |||
top.insert(pya.CellInstArray(linear_grating_vernier_md_course.cell_index(), pya.Trans(2, True, -1 * (grid_extent + fray), (y_offset + fray)))) | |||
# verniers md fine | |||
linear_grating_vernier_md_fine = layout.create_cell("Vernier_md_fine") | |||
square_size = 650000 | |||
fray = 0 | |||
line_length = square_size / 2 + fray | |||
velocity_ratio = 3 | |||
pitch1 = ((square_size * -1) * (image_dist / velocity_ratio)) / ((square_size * -1) - (image_dist / velocity_ratio)) | |||
pitch2 = image_dist / velocity_ratio | |||
opening = 8000 * 2/3 | |||
for i in range(-1 * int(square_size / 2 / pitch1) - 0, int(square_size / 2 / pitch1) + 0): | |||
line = layout.create_cell("Line") | |||
line.shapes(layer2_index).insert(pya.Box(opening / 2, -1 * line_length, pitch1 - opening / 2, line_length)) | |||
linear_grating_vernier_md_fine.insert(pya.CellInstArray(line.cell_index(), pya.Trans(i * pitch1, 0))) | |||
linear_grating_vernier_md_fine.insert(pya.CellInstArray(line.cell_index(), pya.Trans(1, False, 0, (i * pitch1)))) | |||
for i in range(-1 * int(square_size / 2 / pitch1) - 0, int(square_size / 2 / pitch1) + 0): | |||
line = layout.create_cell("Line") | |||
line.shapes(layer1_index).insert(pya.Box(opening / 2, -1 * line_length, pitch2 - opening / 2, line_length)) | |||
linear_grating_vernier_md_fine.insert(pya.CellInstArray(line.cell_index(), pya.Trans(i * pitch2, 0))) | |||
linear_grating_vernier_md_fine.insert(pya.CellInstArray(line.cell_index(), pya.Trans(1, False, 0, (i * pitch2)))) | |||
line = layout.create_cell("Line") | |||
line.shapes(layer2_index).insert(pya.Box(-1 * (square_size / 2 + (1 * image_dist)), square_size / 2 - image_dist, square_size / 2 + (1 * image_dist), square_size / 2 + (1 * image_dist))) | |||
linear_grating_vernier_md_fine.insert(pya.CellInstArray(line.cell_index(), pya.Trans(0, 0))) | |||
line = layout.create_cell("Line") | |||
line.shapes(layer2_index).insert(pya.Box(-1 * (square_size / 2 + (1 * image_dist)), square_size / 2 - image_dist, square_size / 2 + (0 * image_dist), square_size / 2 + (1 * image_dist))) | |||
#linear_grating_vernier_md_fine.insert(pya.CellInstArray(line.cell_index(), pya.Trans(0, 0))) | |||
linear_grating_vernier_md_fine.insert(pya.CellInstArray(line.cell_index(), pya.Trans(1, False, 0, 0))) | |||
linear_grating_vernier_md_fine.insert(pya.CellInstArray(line.cell_index(), pya.Trans(2, False, 0, 0))) | |||
linear_grating_vernier_md_fine.insert(pya.CellInstArray(line.cell_index(), pya.Trans(1, True, 0, 0))) | |||
line = layout.create_cell("Line") | |||
line.shapes(layer1_index).insert(pya.Box(-1 * (square_size / 2 + (1 * image_dist)), square_size / 2, square_size / 2 + (1 * image_dist), square_size / 2 + (0 * image_dist))) | |||
linear_grating_vernier_md_fine.insert(pya.CellInstArray(line.cell_index(), pya.Trans(0, 0))) | |||
linear_grating_vernier_md_fine.insert(pya.CellInstArray(line.cell_index(), pya.Trans(1, False, 0, 0))) | |||
linear_grating_vernier_md_fine.insert(pya.CellInstArray(line.cell_index(), pya.Trans(2, False, 0, 0))) | |||
linear_grating_vernier_md_fine.insert(pya.CellInstArray(line.cell_index(), pya.Trans(3, False, 0, 0))) | |||
triangle = layout.create_cell("Triangle") | |||
triangle.shapes(layer2_index).insert(pya.Polygon([pya.Point(-45000, -1 * image_dist), pya.Point(45000, -1 * image_dist), pya.Point(0, 0)])) | |||
linear_grating_vernier_md_fine.insert(pya.CellInstArray(triangle.cell_index(), pya.Trans(0, False, 0, -1 * (square_size / 2 + (image_dist * 1))))) | |||
linear_grating_vernier_md_fine.insert(pya.CellInstArray(triangle.cell_index(), pya.Trans(1, False, (square_size / 2 + (image_dist * 1)), 0))) | |||
grid_extent = unison_rot_extent + (square_size / 2) + (image_dist * 1) | |||
y_offset = y_offset + square_size + (image_dist * 1) | |||
top.insert(pya.CellInstArray(linear_grating_vernier_md_course.cell_index(), pya.Trans(0, True, (grid_extent + fray), (y_offset + fray)))) | |||
top.insert(pya.CellInstArray(linear_grating_vernier_md_course.cell_index(), pya.Trans(0, False, (grid_extent + fray), -1 * (y_offset + fray)))) | |||
top.insert(pya.CellInstArray(linear_grating_vernier_md_course.cell_index(), pya.Trans(2, True, -1 * (grid_extent + fray), -1 * (y_offset + fray)))) | |||
top.insert(pya.CellInstArray(linear_grating_vernier_md_course.cell_index(), pya.Trans(2, False, -1 * (grid_extent + fray), (y_offset + fray)))) | |||
y_offset = y_offset + (square_size / 2) + (image_dist * 3) | |||
# larger squares only in the unison position | |||
circ_grating_uni = layout.create_cell("Circ_Grating_Uni") | |||
pitch = 20 | |||
width = 10 | |||
square_size = 530000 / 2 | |||
[circ_grating_uni_clip, circ_grating_uni_inv_clip] = gen_circ_grating(pitch, width, square_size, "Circ_Grating_3") | |||
circ_grating_uni.insert(pya.CellInstArray(circ_grating_uni_clip, pya.Trans(0, False, 0, 0))) | |||
circ_grating_uni.insert(pya.CellInstArray(circ_grating_uni_inv_clip, pya.Trans(0, False, 0, 0))) | |||
grid_extent = unison_rot_extent + square_size + image_dist | |||
y_offset = y_offset + (square_size / 1) | |||
top.insert(pya.CellInstArray(circ_grating_uni.cell_index(), pya.Trans(0, False, grid_extent, -1 * y_offset))) | |||
top.insert(pya.CellInstArray(circ_grating_uni.cell_index(), pya.Trans(0, False, -1 * grid_extent, -1 * y_offset))) | |||
top.insert(pya.CellInstArray(circ_grating_uni.cell_index(), pya.Trans(0, False, grid_extent, y_offset))) | |||
top.insert(pya.CellInstArray(circ_grating_uni.cell_index(), pya.Trans(0, False, -1 * grid_extent, y_offset))) | |||
#top.insert(pya.CellInstArray(linear_grating_encoder_clip, pya.Trans(0, False, image_size_half, image_size_half))) | |||
# linear grating encoder for optional optosensor | |||
def gen_encoder_grating(alg_layout, cell): | |||
frame_width = 300000 | |||
linear_grating_encoder_1 = alg_layout.create_cell("Linear_Grating_Encoder_1") | |||
linear_grating_encoder_2 = alg_layout.create_cell("Linear_Grating_Encoder_2") | |||
pitch = 1000 | |||
line_width = 500 | |||
square_width = (frame_width * 2) + (image_dist * 2) | |||
square_width = 2000000 | |||
line_length = square_width | |||
i = -1 * square_width | |||
while (i) < (square_width): | |||
line = alg_layout.create_cell("Line") | |||
line.shapes(layer1_index).insert(pya.Box(line_width, 0, -1 * square_width, line_width)) | |||
line.shapes(layer1_index).insert(pya.Box(0, 0, line_width, -1 * square_width)) | |||
linear_grating_encoder_1.insert(pya.CellInstArray(line.cell_index(), pya.Trans(0, False, i, i))) | |||
line = alg_layout.create_cell("Line") | |||
line.shapes(layer2_index).insert(pya.Box(line_width, 0, -1 * square_width, line_width)) | |||
line.shapes(layer2_index).insert(pya.Box(0, 0, line_width, -1 * square_width)) | |||
linear_grating_encoder_2.insert(pya.CellInstArray(line.cell_index(), pya.Trans(0, False, i, i))) | |||
i = i + pitch | |||
i = -1 * square_width | |||
shift = line_width | |||
while (i) < (frame_width + image_dist): | |||
line = alg_layout.create_cell("Line") | |||
line.shapes(layer2_index).insert(pya.Box(line_width, 0, -1 * square_width, line_width)) | |||
line.shapes(layer2_index).insert(pya.Box(0, 0, line_width, -1 * square_width)) | |||
linear_grating_encoder_1.insert(pya.CellInstArray(line.cell_index(), pya.Trans(0, False, i + shift, i + shift))) | |||
line = alg_layout.create_cell("Line") | |||
line.shapes(layer1_index).insert(pya.Box(line_width, 0, -1 * square_width, line_width)) | |||
line.shapes(layer1_index).insert(pya.Box(0, 0, line_width, -1 * square_width)) | |||
linear_grating_encoder_2.insert(pya.CellInstArray(line.cell_index(), pya.Trans(0, False, i + shift, i + shift))) | |||
i = i + pitch | |||
inner_clip_2 = alg_layout.clip(linear_grating_encoder_2.cell_index(), pya.Box(0, 0, frame_width + image_dist, frame_width + image_dist)) | |||
linear_grating_encoder_clip_2 = alg_layout.clip(linear_grating_encoder_2.cell_index(), pya.Box(0, 0, square_width, square_width)) | |||
cell.insert(pya.CellInstArray(linear_grating_encoder_clip_2, pya.Trans(0, False, image_size_half, image_size_half))) | |||
cell.insert(pya.CellInstArray(inner_clip_2, pya.Trans(0, False, image_size_half + frame_width + image_dist, image_size_half + frame_width + image_dist))) | |||
cell.insert(pya.CellInstArray(linear_grating_encoder_clip_2, pya.Trans(1, False, -1 * image_size_half, image_size_half))) | |||
cell.insert(pya.CellInstArray(inner_clip_2, pya.Trans(1, False, -1 * (image_size_half + frame_width + image_dist), image_size_half + frame_width + image_dist))) | |||
inner_clip_1 = alg_layout.clip(linear_grating_encoder_1.cell_index(), pya.Box(0, 0, frame_width + image_dist, frame_width + image_dist)) | |||
linear_grating_encoder_clip_1 = alg_layout.clip(linear_grating_encoder_1.cell_index(), pya.Box(0, 0, square_width, square_width)) | |||
cell.insert(pya.CellInstArray(linear_grating_encoder_clip_1, pya.Trans(2, False, -1 * image_size_half, -1 * image_size_half))) | |||
cell.insert(pya.CellInstArray(inner_clip_1, pya.Trans(2, False, -1 * (image_size_half + frame_width + image_dist), -1 * (image_size_half + frame_width + image_dist)))) | |||
cell.insert(pya.CellInstArray(linear_grating_encoder_clip_1, pya.Trans(3, False, image_size_half, -1 * image_size_half))) | |||
cell.insert(pya.CellInstArray(inner_clip_1, pya.Trans(3, False, image_size_half + frame_width + image_dist, -1 * (image_size_half + frame_width + image_dist)))) | |||
cell.flatten(1) | |||
alg_layout.prune_cell(linear_grating_encoder_1.cell_index(), -1) | |||
alg_layout.prune_cell(linear_grating_encoder_2.cell_index(), -1) | |||
top.flatten(1) | |||
wafer1_region1 = pya.Region(top.begin_shapes_rec(layer1_index)) | |||
wafer1_region2 = pya.Region(top.begin_shapes_rec(layer3_index)) | |||
wafer2_region1 = pya.Region(top.begin_shapes_rec(layer2_index)) | |||
wafer2_region2 = pya.Region(top.begin_shapes_rec(layer4_index)) | |||
alignment_layout = pya.Layout() | |||
alignment = alignment_layout.create_cell("Alignment") | |||
alignment_layout.dbu = 0.01 | |||
layer1_index = alignment_layout.insert_layer(pya.LayerInfo.new(1, 0)) | |||
layer2_index = alignment_layout.insert_layer(pya.LayerInfo.new(2, 0)) | |||
encode_region = pya.Region() | |||
square_width = 2000000 | |||
encode_region.insert(pya.Box(image_size_half, image_size_half, image_size_half + square_width, image_size_half + square_width)) #encoder | |||
encode_region.insert(pya.Box(image_size_half, -1 * image_size_half, image_size_half + square_width, -1 * (image_size_half + square_width))) #encoder | |||
encode_region.insert(pya.Box(-1 * image_size_half, image_size_half, -1 * (image_size_half + square_width), image_size_half + square_width)) #encoder | |||
encode_region.insert(pya.Box(-1 * image_size_half, -1 * image_size_half, -1 * (image_size_half + square_width), -1 * (image_size_half + square_width))) #encoder | |||
alignment.shapes(layer1_index).insert((wafer1_region1 & wafer1_region2) - encode_region) | |||
alignment.shapes(layer2_index).insert((wafer2_region1 & wafer2_region2) - encode_region) | |||
gen_encoder_grating(alignment_layout, alignment) | |||
#alignment_layout.transform(pya.Trans(2, False, 0, 0)) | |||
alignment_layout.write(os.path.join(base_dir, "..", "gds", "alignment_marks_overlapped.gds")) | |||
alignment_inv_layout = pya.Layout() | |||
alignment_inv = alignment_inv_layout.create_cell("Alignment_Inverse") | |||
alignment_inv_layout.dbu = 0.01 | |||
layer1_index = alignment_inv_layout.insert_layer(pya.LayerInfo.new(1, 0)) | |||
layer2_index = alignment_inv_layout.insert_layer(pya.LayerInfo.new(2, 0)) | |||
alignment_inv.shapes(layer1_index).insert(wafer1_region2 - wafer1_region1) | |||
alignment_inv.shapes(layer2_index).insert(wafer2_region2 - wafer2_region1) | |||
gen_encoder_grating(alignment_inv_layout, alignment_inv) | |||
#alignment_inv_layout.transform(pya.Trans(2, False, 0, 0)) | |||
alignment_inv_layout.write(os.path.join(base_dir, "..", "gds", "inverted_tonality", "alignment_marks_overlapped_inverse.gds")) |
@@ -0,0 +1,147 @@ | |||
import pya | |||
import os | |||
from PIL import Image | |||
base_dir = os.path.dirname(os.path.abspath(__file__)) | |||
#for some reason pya is not getting the size so using PIL | |||
im = Image.open(os.path.join(base_dir, "..", "visualizations", "11735", "shadow_img_0_final.png")) | |||
#width, height = [100, 100] | |||
width, height = im.size | |||
im.close() | |||
# create layout | |||
layout = pya.Layout() | |||
layout.dbu = 0.01 | |||
image = layout.create_cell("Image") | |||
layer1_index = layout.insert_layer(pya.LayerInfo.new(1, 0)) | |||
layer2_index = layout.insert_layer(pya.LayerInfo.new(2, 0)) | |||
image1 = pya.Image(os.path.join(base_dir, "..", "visualizations", "11735", "shadow_img_0_final.png")) | |||
# The dimension of one pixel | |||
pixelSize = 2000 | |||
# image distance in pixels minus the 2 pixel offset | |||
shift_mult = 5 | |||
image_dist = (shift_mult * 3 * 2) | |||
image1_region = pya.Region() | |||
image2_region = pya.Region() | |||
image1_region_bb = pya.Region() | |||
image2_region_bb = pya.Region() | |||
final_region = pya.Region() | |||
# Iterate over all rows in image1 | |||
for y in range(height): | |||
# Iterate over all columns in image1 | |||
for x in range(width): | |||
# Use each channel for a different layer | |||
# d > 0.5 selects all pixels with a level > 50% in that channel | |||
d = image1.get_pixel(x, y, 0) | |||
if d < 0.5: | |||
# Create a polygon corresponding to one pixel | |||
p1 = pya.DPoint((x * pixelSize) - (0.5 * width * pixelSize), (y * pixelSize) - (0.5 * width * pixelSize)) | |||
p2 = pya.DPoint(((x + 1) * pixelSize) - (0.5 * width * pixelSize), ((y + 1) * pixelSize) - (0.5 * width * pixelSize)) | |||
dbox = pya.DBox(p1, p2) | |||
box = pya.Box.from_dbox(dbox) | |||
poly = pya.Polygon(box) | |||
image1_region.insert(poly) | |||
image1._destroy() | |||
image2 = pya.Image(os.path.join(base_dir, "..", "visualizations", "11735", "shadow_img_1_final.png")) | |||
# Iterate over all rows in image2 | |||
for y in range(image_dist, height - image_dist): | |||
# Iterate over all columns in image2 | |||
for x in range(image_dist, width - image_dist): | |||
# Use each channel for a different layer | |||
# d > 0.5 selects all pixels with a level > 50% in that channel | |||
d = image2.get_pixel(x, y, 0) | |||
if d < 0.5: | |||
# Create a polygon corresponding to one pixel | |||
p1 = pya.DPoint((x * pixelSize) - (0.5 * width * pixelSize), (y * pixelSize) - (0.5 * width * pixelSize)) | |||
p2 = pya.DPoint(((x + 1) * pixelSize) - (0.5 * width * pixelSize), ((y + 1) * pixelSize) - (0.5 * width * pixelSize)) | |||
dbox = pya.DBox(p1, p2) | |||
box = pya.Box.from_dbox(dbox) | |||
poly = pya.Polygon(box) | |||
image2_region.insert(poly) | |||
print("pixel import finished") | |||
image2._destroy() | |||
image1_bb = pya.Box(-0.5 * width * pixelSize, -0.5 * height * pixelSize, 0.5 * width * pixelSize, 0.5 * width * pixelSize) | |||
image2_bb = pya.Box(((-0.5 * width) + image_dist) * pixelSize, ((-0.5 * height) + image_dist) * pixelSize, ((0.5 * width) - image_dist) * pixelSize, ((0.5 * height) - image_dist) * pixelSize) | |||
image1_region_bb.insert(image1_bb) | |||
image2_region_bb.insert(image2_bb) | |||
#if you resize image1, you must sent merged_semantics to True!!!! | |||
#image1_region.merged_semantics = False | |||
#image2_region.merged_semantics = False | |||
#image1_region_inverse.merged_semantics = False | |||
#image2_region_inverse.merged_semantics = False | |||
#image1_region_bb.merged_semantics = False | |||
#image2_region_bb.merged_semantics = False | |||
#final_region.merged_semantics = False | |||
#image1_region.strict_handling = True | |||
#image2_region.strict_handling = True | |||
#image1_region_inverse.strict_handling = True | |||
#image2_region_inverse.strict_handling = True | |||
#image2_region.strict_handling = True | |||
#image1_region_bb.strict_handling = True | |||
#image2_region_bb.strict_handling = True | |||
#final_region.strict_handling = True | |||
#image1_region.size(25) #opting not to resize image1 | |||
image2_region.size(150) | |||
print("resize finished") | |||
image_layout = pya.Layout() | |||
image = image_layout.create_cell("Image") | |||
image_layout.dbu = 0.01 | |||
layer1_image_index = image_layout.insert_layer(pya.LayerInfo.new(1, 0)) | |||
layer2_image_index = image_layout.insert_layer(pya.LayerInfo.new(2, 0)) | |||
print("finalizing layout for image_overlapped.gds") | |||
#normal | |||
image.shapes(layer1_index).insert(image1_region) | |||
image_layout.clip(image.cell_index(), image1_bb) | |||
processor = pya.ShapeProcessor() | |||
processor.merge(image_layout, image, layer1_image_index, image.shapes(layer1_image_index), False, 0, False, True) | |||
print("layer1 finished") | |||
image.shapes(layer2_image_index).insert(image2_region_bb & image2_region) | |||
print("layer2 finished") | |||
print("layout for image_overlapped.gds finished") | |||
image_layout.write(os.path.join(base_dir, "..", "gds", "image_overlapped.gds")) | |||
print("image_overlapped.gds written") | |||
image_inv_layout = pya.Layout() | |||
image_inv = image_inv_layout.create_cell("Image_Inverse") | |||
image_inv_layout.dbu = 0.01 | |||
layer1_image_inv_index = image_inv_layout.insert_layer(pya.LayerInfo.new(1, 0)) | |||
layer2_image_inv_index = image_inv_layout.insert_layer(pya.LayerInfo.new(2, 0)) | |||
print("finalizing layout for image_overlapped_inverse.gds") | |||
#inverted | |||
#image_inv.shapes(layer1_index).insert(pya.Box(-7500000, -6850000, 7500000, 6850000 - 1850000)) #printable area wafer 1 | |||
#image_inv.shapes(layer2_index).insert(pya.Box(-7500000, 6850000, 7500000, -1 * (6850000 - 1850000))) #printable area wafer 2 | |||
#the printable areas are rotated for the overlay with the alignment marks | |||
image_inv.shapes(layer1_index).insert(pya.Box(-7500000, -6850000, 7500000, 6850000 - 1850000).transformed(pya.Trans(1, False, 0, 0))) #printable area wafer 1 | |||
image_inv.shapes(layer2_index).insert(pya.Box(-7500000, 6850000, 7500000, -1 * (6850000 - 1850000)).transformed(pya.Trans(1, False, 0, 0))) #printable area wafer 2 | |||
processor = pya.ShapeProcessor() | |||
processor.boolean(image_layout, image, layer1_image_index, image_inv_layout, image_inv, layer1_image_inv_index, image_inv.shapes(layer1_image_inv_index), 3, False, False, True) | |||
print("layer1 finished") | |||
processor = pya.ShapeProcessor() | |||
processor.boolean(image_layout, image, layer2_image_index, image_inv_layout, image_inv, layer2_image_inv_index, image_inv.shapes(layer2_image_inv_index), 3, False, False, True) | |||
print("layer2 finished") | |||
print("layout for image_overlapped_inverse.gds finished") | |||
image_inv_layout.write(os.path.join(base_dir, "..", "gds", "inverted_tonality", "image_overlapped_inverse.gds")) | |||
print("image_overlapped_inverse.gds written") | |||
@@ -0,0 +1,156 @@ | |||
import pya | |||
import os | |||
base_dir = os.path.dirname(os.path.abspath(__file__)) | |||
# init vars | |||
velocity_ratio1 = 2 | |||
opening1 = 8000 | |||
velocity_ratio2 = 3 | |||
opening2 = opening1 * velocity_ratio1 / velocity_ratio2 | |||
pixel_size = 20 | |||
shift_mult = 5 | |||
image_size = 4266 * pixel_size * 100 #calculate this directly (4266 and 4242 for shift_mult 5 and 3, respectively) | |||
image_size_half = image_size / 2 | |||
image_dist = (shift_mult * 3 * 2 + 2) * pixel_size * 100 | |||
object_border = 0 | |||
#print(image_dist) | |||
# create layout | |||
layout = pya.Layout() | |||
layout.dbu = 0.01 | |||
top = layout.create_cell("Top") | |||
layer1_index = layout.insert_layer(pya.LayerInfo.new(1, 0)) | |||
layer2_index = layout.insert_layer(pya.LayerInfo.new(2, 0)) | |||
layer3_index = layout.insert_layer(pya.LayerInfo.new(3, 0)) | |||
layer4_index = layout.insert_layer(pya.LayerInfo.new(4, 0)) | |||
layer5_index = layout.insert_layer(pya.LayerInfo.new(5, 0)) | |||
y_offset = 0 | |||
# verniers md course | |||
linear_grating_vernier_md_course = layout.create_cell("Vernier_md_course") | |||
square_size = 650000 | |||
fray = 0 | |||
line_length = square_size / 2 + fray | |||
pitch11 = ((square_size * 1) * (image_dist / velocity_ratio1)) / ((square_size * 1) - (image_dist / velocity_ratio1)) | |||
pitch12 = image_dist / velocity_ratio1 | |||
for i in range(-1 * int(square_size / 2 / pitch11) - 0, int(square_size / 2 / pitch11) + 0): | |||
line = layout.create_cell("Line") | |||
line.shapes(layer2_index).insert(pya.Box(opening1 / 2, -1 * line_length, pitch11 - opening1 / 2, line_length)) | |||
linear_grating_vernier_md_course.insert(pya.CellInstArray(line.cell_index(), pya.Trans(i * pitch11, 0))) | |||
linear_grating_vernier_md_course.insert(pya.CellInstArray(line.cell_index(), pya.Trans(1, False, 0, (i * pitch11)))) | |||
for i in range(-1 * int(square_size / 2 / pitch12) - 0, int(square_size / 2 / pitch12) + 0): | |||
line = layout.create_cell("Line") | |||
line.shapes(layer1_index).insert(pya.Box(opening1 / 2, -1 * line_length, pitch12 - opening1 / 2, line_length)) | |||
linear_grating_vernier_md_course.insert(pya.CellInstArray(line.cell_index(), pya.Trans(i * pitch12, 0))) | |||
linear_grating_vernier_md_course.insert(pya.CellInstArray(line.cell_index(), pya.Trans(1, False, 0, (i * pitch12)))) | |||
line = layout.create_cell("Line") | |||
line.shapes(layer2_index).insert(pya.Box(-1 * (square_size / 2 + (1 * image_dist)), square_size / 2 - image_dist, square_size / 2 + (1 * image_dist), square_size / 2 + (1 * image_dist))) | |||
linear_grating_vernier_md_course.insert(pya.CellInstArray(line.cell_index(), pya.Trans(0, 0))) | |||
line = layout.create_cell("Line") | |||
line.shapes(layer2_index).insert(pya.Box(-1 * (square_size / 2 + (1 * image_dist)), square_size / 2 - image_dist, square_size / 2 + (0 * image_dist), square_size / 2 + (1 * image_dist))) | |||
#linear_grating_vernier_md_course.insert(pya.CellInstArray(line.cell_index(), pya.Trans(0, 0))) | |||
linear_grating_vernier_md_course.insert(pya.CellInstArray(line.cell_index(), pya.Trans(1, False, 0, 0))) | |||
linear_grating_vernier_md_course.insert(pya.CellInstArray(line.cell_index(), pya.Trans(2, False, 0, 0))) | |||
linear_grating_vernier_md_course.insert(pya.CellInstArray(line.cell_index(), pya.Trans(1, True, 0, 0))) | |||
line = layout.create_cell("Line") | |||
line.shapes(layer1_index).insert(pya.Box(-1 * (square_size / 2 + (1 * image_dist)), square_size / 2, square_size / 2 + (1 * image_dist), square_size / 2 + (0 * image_dist))) | |||
linear_grating_vernier_md_course.insert(pya.CellInstArray(line.cell_index(), pya.Trans(0, 0))) | |||
linear_grating_vernier_md_course.insert(pya.CellInstArray(line.cell_index(), pya.Trans(1, False, 0, 0))) | |||
linear_grating_vernier_md_course.insert(pya.CellInstArray(line.cell_index(), pya.Trans(2, False, 0, 0))) | |||
linear_grating_vernier_md_course.insert(pya.CellInstArray(line.cell_index(), pya.Trans(3, False, 0, 0))) | |||
triangle = layout.create_cell("Triangle") | |||
triangle.shapes(layer2_index).insert(pya.Polygon([pya.Point(-45000, -1 * image_dist), pya.Point(45000, -1 * image_dist), pya.Point(0, 0)])) | |||
linear_grating_vernier_md_course.insert(pya.CellInstArray(triangle.cell_index(), pya.Trans(0, False, 0, -1 * (square_size / 2 + (image_dist * 1))))) | |||
linear_grating_vernier_md_course.insert(pya.CellInstArray(triangle.cell_index(), pya.Trans(1, False, (square_size / 2 + (image_dist * 1)), 0))) | |||
y_offset = y_offset + (square_size / 2) + (image_dist * 3) | |||
grid_extent = 0 | |||
top.insert(pya.CellInstArray(linear_grating_vernier_md_course.cell_index(), pya.Trans(0, False, (grid_extent + fray), (y_offset + fray)))) | |||
# verniers md fine | |||
linear_grating_vernier_md_fine = layout.create_cell("Vernier_md_fine") | |||
square_size = 650000 | |||
fray = 0 | |||
line_length = square_size / 2 + fray | |||
pitch21 = ((square_size * -1) * (image_dist / velocity_ratio2)) / ((square_size * -1) - (image_dist / velocity_ratio2)) | |||
pitch22 = image_dist / velocity_ratio2 | |||
for i in range(-1 * int(square_size / 2 / pitch21) - 0, int(square_size / 2 / pitch21) + 0): | |||
line = layout.create_cell("Line") | |||
line.shapes(layer2_index).insert(pya.Box(opening2 / 2, -1 * line_length, pitch21 - opening2 / 2, line_length)) | |||
linear_grating_vernier_md_fine.insert(pya.CellInstArray(line.cell_index(), pya.Trans(i * pitch21, 0))) | |||
linear_grating_vernier_md_fine.insert(pya.CellInstArray(line.cell_index(), pya.Trans(1, False, 0, (i * pitch21)))) | |||
for i in range(-1 * int(square_size / 2 / pitch22) - 0, int(square_size / 2 / pitch22) + 0): | |||
line = layout.create_cell("Line") | |||
line.shapes(layer1_index).insert(pya.Box(opening2 / 2, -1 * line_length, pitch22 - opening2 / 2, line_length)) | |||
linear_grating_vernier_md_fine.insert(pya.CellInstArray(line.cell_index(), pya.Trans(i * pitch22, 0))) | |||
linear_grating_vernier_md_fine.insert(pya.CellInstArray(line.cell_index(), pya.Trans(1, False, 0, (i * pitch22)))) | |||
line = layout.create_cell("Line") | |||
line.shapes(layer2_index).insert(pya.Box(-1 * (square_size / 2 + (1 * image_dist)), square_size / 2 - image_dist, square_size / 2 + (1 * image_dist), square_size / 2 + (1 * image_dist))) | |||
linear_grating_vernier_md_fine.insert(pya.CellInstArray(line.cell_index(), pya.Trans(0, 0))) | |||
line = layout.create_cell("Line") | |||
line.shapes(layer2_index).insert(pya.Box(-1 * (square_size / 2 + (1 * image_dist)), square_size / 2 - image_dist, square_size / 2 + (0 * image_dist), square_size / 2 + (1 * image_dist))) | |||
#linear_grating_vernier_md_fine.insert(pya.CellInstArray(line.cell_index(), pya.Trans(0, 0))) | |||
linear_grating_vernier_md_fine.insert(pya.CellInstArray(line.cell_index(), pya.Trans(1, False, 0, 0))) | |||
linear_grating_vernier_md_fine.insert(pya.CellInstArray(line.cell_index(), pya.Trans(2, False, 0, 0))) | |||
linear_grating_vernier_md_fine.insert(pya.CellInstArray(line.cell_index(), pya.Trans(1, True, 0, 0))) | |||
line = layout.create_cell("Line") | |||
line.shapes(layer1_index).insert(pya.Box(-1 * (square_size / 2 + (1 * image_dist)), square_size / 2, square_size / 2 + (1 * image_dist), square_size / 2 + (0 * image_dist))) | |||
linear_grating_vernier_md_fine.insert(pya.CellInstArray(line.cell_index(), pya.Trans(0, 0))) | |||
linear_grating_vernier_md_fine.insert(pya.CellInstArray(line.cell_index(), pya.Trans(1, False, 0, 0))) | |||
linear_grating_vernier_md_fine.insert(pya.CellInstArray(line.cell_index(), pya.Trans(2, False, 0, 0))) | |||
linear_grating_vernier_md_fine.insert(pya.CellInstArray(line.cell_index(), pya.Trans(3, False, 0, 0))) | |||
triangle = layout.create_cell("Triangle") | |||
triangle.shapes(layer2_index).insert(pya.Polygon([pya.Point(-45000, -1 * image_dist), pya.Point(45000, -1 * image_dist), pya.Point(0, 0)])) | |||
linear_grating_vernier_md_fine.insert(pya.CellInstArray(triangle.cell_index(), pya.Trans(0, False, 0, -1 * (square_size / 2 + (image_dist * 1))))) | |||
linear_grating_vernier_md_fine.insert(pya.CellInstArray(triangle.cell_index(), pya.Trans(1, False, (square_size / 2 + (image_dist * 1)), 0))) | |||
y_offset = y_offset + square_size + (image_dist * 1) | |||
grid_extent = 0 | |||
top.insert(pya.CellInstArray(linear_grating_vernier_md_fine.cell_index(), pya.Trans(0, True, (grid_extent + fray), (y_offset + fray)))) | |||
top.flatten(1) | |||
top.write(os.path.join(base_dir, "..", "gds", "md_vernier_test.gds")) | |||
bb_region = pya.Region(pya.Box(-650000, -300000, 650000, 2000000)) | |||
wafer1 = pya.Region(top.begin_shapes_rec(layer1_index)) | |||
wafer2 = pya.Region(top.begin_shapes_rec(layer2_index)) | |||
alignment_inv_layout = pya.Layout() | |||
alignment_inv = alignment_inv_layout.create_cell("Alignment_Inverse") | |||
alignment_inv_layout.dbu = 0.01 | |||
layer1_index = alignment_inv_layout.insert_layer(pya.LayerInfo.new(1, 0)) | |||
layer2_index = alignment_inv_layout.insert_layer(pya.LayerInfo.new(2, 0)) | |||
alignment_inv.shapes(layer1_index).insert(bb_region - wafer1) | |||
alignment_inv.shapes(layer2_index).insert(bb_region - wafer2) | |||
alignment_inv_layout.write(os.path.join(base_dir, "..", "gds", "inverted_tonality", "md_vernier_test_inverse.gds")) | |||
@@ -0,0 +1,43 @@ | |||
import pya | |||
import os | |||
base_dir = os.path.dirname(os.path.abspath(__file__)) | |||
layout = pya.Layout() | |||
layout.read(os.path.join(base_dir, "..", "gds", "image_with_alignment_marks_overlapped.gds")) | |||
layout.delete_layer(1) | |||
layout.top_cell().shapes(0).insert(pya.Box(-9000000, 6850000 - 1850000 + 30000, 9000000, 6850000 - 1850000 + 30000 + 5000)) | |||
#layout.transform(pya.Trans(2, False, 0, 0)) | |||
layout.write(os.path.join(base_dir, "..", "gds", "wafer_1.gds")) | |||
layout = pya.Layout() | |||
layout.read(os.path.join(base_dir, "..", "gds", "image_with_alignment_marks_overlapped.gds")) | |||
layout.delete_layer(0) | |||
#layout.transform(pya.Trans(2, True, 0, 0)) | |||
layout.transform(pya.Trans(0, True, 0, 0)) | |||
layout.top_cell().shapes(1).insert(pya.Box(-9000000, 6850000 - 1850000 + 30000, 9000000, 6850000 - 1850000 + 30000 + 5000)) | |||
layout.write(os.path.join(base_dir, "..", "gds", "wafer_2.gds")) | |||
layout = pya.Layout() | |||
layout.read(os.path.join(base_dir, "..", "gds", "inverted_tonality", "image_with_alignment_marks_overlapped_inverse.gds")) | |||
layout.delete_layer(1) | |||
#layout.transform(pya.Trans(2, False, 0, 0)) | |||
layout.write(os.path.join(base_dir, "..", "gds", "inverted_tonality", "wafer_1_inverse.gds")) | |||
layout = pya.Layout() | |||
layout.read(os.path.join(base_dir, "..", "gds", "inverted_tonality", "image_with_alignment_marks_overlapped_inverse.gds")) | |||
layout.delete_layer(0) | |||
#layout.transform(pya.Trans(2, True, 0, 0)) | |||
layout.transform(pya.Trans(0, True, 0, 0)) | |||
layout.write(os.path.join(base_dir, "..", "gds", "inverted_tonality", "wafer_2_inverse.gds")) |
@@ -0,0 +1,30 @@ | |||
import pya | |||
#amount to shift in units of distance between images | |||
shift_x = 0 | |||
shift_y = 0 | |||
#vars on current sizes | |||
shift_mult = 5 | |||
pixel_size = 20 | |||
image_dist = (shift_mult * 3 * 2 + 2) * pixel_size * 100 | |||
print(image_dist) | |||
#shift and take the overlap returning a 3rd layer | |||
ly = pya.CellView.active().layout() | |||
l10 = ly.layer(1, 0) | |||
l20 = ly.layer(2, 0) | |||
bbox = pya.Region() | |||
bbox.insert(ly.top_cell().bbox()) | |||
#r10 = bbox - pya.Region(ly.top_cell().begin_shapes_rec(l10)) | |||
#r20 = bbox - pya.Region(ly.top_cell().begin_shapes_rec(l20)) | |||
r10 = pya.Region(ly.top_cell().begin_shapes_rec(l10)) | |||
r20 = pya.Region(ly.top_cell().begin_shapes_rec(l20)) | |||
r10.move(image_dist * shift_x, image_dist* shift_y) | |||
ly.delete_layer(ly.layer(3, 0)) | |||
ly.top_cell().shapes(ly.layer(3, 0)).insert(bbox - (r10 | r20)) | |||
pya.LayoutView.current().add_missing_layers() |
@@ -0,0 +1,22 @@ | |||
import pya | |||
#amount to shift in units of distance between images | |||
shift_x = -1 | |||
shift_y = -1 | |||
#vars on current sizes | |||
shift_mult = 5 | |||
pixel_size = 20 | |||
image_dist = (shift_mult * 3 * 2 + 2) * pixel_size * 100 | |||
print(image_dist) | |||
#shift and take the overlap returning a 3rd layer | |||
ly = pya.CellView.active().layout() | |||
l10 = ly.layer(1, 0) | |||
l20 = ly.layer(2, 0) | |||
r10 = pya.Region(ly.top_cell().begin_shapes_rec(l10)) | |||
r20 = pya.Region(ly.top_cell().begin_shapes_rec(l20)) | |||
r10.move(image_dist * shift_x, image_dist* shift_y) | |||
ly.delete_layer(ly.layer(3, 0)) | |||
ly.top_cell().shapes(ly.layer(3, 0)).insert(r10 & r20) | |||
pya.LayoutView.current().add_missing_layers() |
@@ -0,0 +1,116 @@ | |||
import pya | |||
import os | |||
base_dir = os.path.dirname(os.path.abspath(__file__)) | |||
# init vars | |||
velocity_ratio1 = 1 | |||
opening1 = 4000 | |||
velocity_ratio2 = 5 | |||
opening2 = opening1 * velocity_ratio1 / velocity_ratio2 | |||
pixel_size = 20 | |||
shift_mult = 5 | |||
image_size = 4266 * pixel_size * 100 #calculate this directly (4266 and 4242 for shift_mult 5 and 3, respectively) | |||
image_size_half = image_size / 2 | |||
image_dist = (shift_mult * 3 * 2 + 2) * pixel_size * 100 | |||
object_border = 0 | |||
#print(image_dist) | |||
# create layout | |||
layout = pya.Layout() | |||
layout.dbu = 0.01 | |||
top = layout.create_cell("Top") | |||
layer1_index = layout.insert_layer(pya.LayerInfo.new(1, 0)) | |||
layer2_index = layout.insert_layer(pya.LayerInfo.new(2, 0)) | |||
layer3_index = layout.insert_layer(pya.LayerInfo.new(3, 0)) | |||
layer4_index = layout.insert_layer(pya.LayerInfo.new(4, 0)) | |||
layer5_index = layout.insert_layer(pya.LayerInfo.new(5, 0)) | |||
# verniers | |||
linear_grating_vernier = layout.create_cell("Vernier") | |||
base_period = image_size_half - 500000 | |||
revealing_period = image_dist | |||
pitch11 = (base_period * (revealing_period / velocity_ratio1)) / (base_period - (revealing_period / velocity_ratio1)) | |||
pitch12 = revealing_period / velocity_ratio1 | |||
#print(pitch11) | |||
#print(pitch12) | |||
frame_width = 300000 | |||
for i in range(-1 * int((image_size_half) / pitch11), int((image_size_half) / pitch11)): | |||
line = layout.create_cell("Line") | |||
line.shapes(layer2_index).insert(pya.Box(opening1 / 2, -1 * frame_width, pitch11 - opening1 / 2, 0)) | |||
linear_grating_vernier.insert(pya.CellInstArray(line.cell_index(), pya.Trans(i * pitch11, 0))) | |||
for i in range(-1 * int((image_size_half - image_dist) / pitch12), int((image_size_half - image_dist) / pitch12)): | |||
line = layout.create_cell("Line") | |||
line.shapes(layer1_index).insert(pya.Box(opening1 / 2, -1 * frame_width, pitch12 - opening1 / 2, 0)) | |||
linear_grating_vernier.insert(pya.CellInstArray(line.cell_index(), pya.Trans(i * pitch12, 0))) | |||
base_period = -1 * (image_size_half - 500000) | |||
revealing_period = image_dist | |||
pitch21 = (base_period * (revealing_period / velocity_ratio2)) / (base_period - (revealing_period / velocity_ratio2)) | |||
pitch22 = revealing_period / velocity_ratio2 | |||
for i in range(-1 * int(image_size_half / pitch21), int(image_size_half / pitch21)): | |||
line = layout.create_cell("Line") | |||
line.shapes(layer2_index).insert(pya.Box(opening2 / 2, 0, pitch21 - opening2 / 2, frame_width)) | |||
linear_grating_vernier.insert(pya.CellInstArray(line.cell_index(), pya.Trans(i * pitch21, 0))) | |||
for i in range(-1 * int((image_size_half - image_dist) / pitch22), int((image_size_half - image_dist) / pitch22)): | |||
line = layout.create_cell("Line") | |||
line.shapes(layer1_index).insert(pya.Box(opening2 / 2, 0, pitch22 - opening2 / 2, frame_width)) | |||
linear_grating_vernier.insert(pya.CellInstArray(line.cell_index(), pya.Trans(i * pitch22, 0))) | |||
line = layout.create_cell("Line") | |||
line.shapes(layer2_index).insert(pya.Box(image_size_half - (2 * image_dist), -1 * frame_width, image_size_half, 0)) | |||
line.shapes(layer2_index).insert(pya.Box(-1 * (image_size_half - (2 * image_dist)), -1 * frame_width, -1 * (image_size_half), 0)) | |||
line.shapes(layer2_index).insert(pya.Box(image_size_half - (2 * image_dist), image_dist, image_size_half, image_dist + frame_width)) | |||
line.shapes(layer2_index).insert(pya.Box(-1 * (image_size_half - (2 * image_dist)), image_dist, -1 * (image_size_half), image_dist + frame_width)) | |||
#These four lines can be taken away to get rid of the bounding black out | |||
line.shapes(layer2_index).insert(pya.Box(-1 * image_size_half, image_dist, image_size_half, 0 - image_dist)) | |||
line.shapes(layer2_index).insert(pya.Box(-1 * image_size_half, -1 * (frame_width - image_dist), image_size_half, -1 * (frame_width + image_dist))) | |||
line.shapes(layer2_index).insert(pya.Box(-1 * image_size_half, 0, image_size_half, image_dist)) | |||
line.shapes(layer2_index).insert(pya.Box(-1 * image_size_half, frame_width + (2 * image_dist), image_size_half, frame_width - image_dist)) | |||
linear_grating_vernier.insert(pya.CellInstArray(line.cell_index(), pya.Trans(0, 0))) | |||
line = layout.create_cell("Line") | |||
line.shapes(layer1_index).insert(pya.Box(image_size_half - image_dist, -1 * frame_width, image_size_half - (2 * image_dist), 0)) | |||
line.shapes(layer1_index).insert(pya.Box(-1 * (image_size_half - image_dist), -1 * frame_width, -1 * (image_size_half - (2 * image_dist)), 0)) | |||
line.shapes(layer1_index).insert(pya.Box(image_size_half - image_dist, 0, image_size_half - (2 * image_dist), frame_width)) | |||
line.shapes(layer1_index).insert(pya.Box(-1 * (image_size_half - image_dist), 0, -1 * (image_size_half - (2 * image_dist)), frame_width)) | |||
linear_grating_vernier.insert(pya.CellInstArray(line.cell_index(), pya.Trans(0, 0))) | |||
top.insert(pya.CellInstArray(linear_grating_vernier.cell_index(), pya.Trans(0,0 ))) | |||
top.flatten(1) | |||
top.write(os.path.join(base_dir, "..", "gds", "ud_vernier_test.gds")) | |||
bb_region = pya.Region(pya.Box(-5000000, -1 * (frame_width + image_dist), 5000000, frame_width + (2 * image_dist))) | |||
wafer1 = pya.Region(top.begin_shapes_rec(layer1_index)) | |||
wafer2 = pya.Region(top.begin_shapes_rec(layer2_index)) | |||
alignment_inv_layout = pya.Layout() | |||
alignment_inv = alignment_inv_layout.create_cell("Alignment_Inverse") | |||
alignment_inv_layout.dbu = 0.01 | |||
layer1_index = alignment_inv_layout.insert_layer(pya.LayerInfo.new(1, 0)) | |||
layer2_index = alignment_inv_layout.insert_layer(pya.LayerInfo.new(2, 0)) | |||
alignment_inv.shapes(layer1_index).insert(bb_region - wafer1) | |||
alignment_inv.shapes(layer2_index).insert(bb_region - wafer2) | |||
alignment_inv_layout.write(os.path.join(base_dir, "..", "gds", "inverted_tonality", "ud_vernier_test_inverse.gds")) | |||
@@ -0,0 +1,43 @@ | |||
\version "2.19.83" | |||
#(set! paper-alist (cons '("my size" . (cons (* 8 in) (* 0.8 in))) paper-alist)) | |||
\header { | |||
tagline = "" | |||
} | |||
\paper { | |||
#(set-paper-size "my size") | |||
} | |||
\layout { | |||
indent = 0.0\cm | |||
line-width = 20\cm | |||
\context { | |||
\Staff | |||
\remove "Time_signature_engraver" | |||
\remove "Bar_engraver" | |||
\hide Stem | |||
\override TextScript.staff-padding = #1 | |||
} | |||
} | |||
\new Staff << | |||
\accidentalStyle dodecaphonic | |||
\relative c' { | |||
a4^\markup{ \center-align{+0}} | |||
s4 | |||
b4^\markup{ \center-align{+4}} | |||
s4 | |||
cis4^\markup{ \center-align{-14}} | |||
s4 | |||
dih4^\markup{ \center-align{+1}} | |||
s4 | |||
e4^\markup{ \center-align{+2}} | |||
s4 | |||
fih4^\markup{ \center-align{-9}} | |||
s4 | |||
geh4^\markup{ \center-align{+19}} | |||
s4 | |||
gis4^\markup{ \center-align{-12}} | |||
} | |||
>> |
@@ -0,0 +1,2 @@ | |||
\relax | |||
\catcode 95\active |
@@ -0,0 +1,995 @@ | |||
This is pdfTeX, Version 3.14159265-2.6-1.40.19 (TeX Live 2018/Arch Linux) (preloaded format=pdflatex 2019.4.22) 6 JUL 2019 23:47 | |||
entering extended mode | |||
restricted \write18 enabled. | |||
%&-line parsing enabled. | |||
**ammann_score.tex | |||
(./ammann_score.tex | |||
LaTeX2e <2018-12-01> | |||
(/usr/share/texmf-dist/tex/latex/base/letter.cls | |||
Document Class: letter 2014/09/29 v1.2z Standard LaTeX document class | |||
(/usr/share/texmf-dist/tex/latex/base/size10.clo | |||
File: size10.clo 2018/09/03 v1.4i Standard LaTeX file (size option) | |||
) | |||
\longindentation=\dimen102 | |||
\indentedwidth=\dimen103 | |||
\labelcount=\count80 | |||
) | |||
(/usr/share/texmf-dist/tex/latex/geometry/geometry.sty | |||
Package: geometry 2018/04/16 v5.8 Page Geometry | |||
(/usr/share/texmf-dist/tex/latex/graphics/keyval.sty | |||
Package: keyval 2014/10/28 v1.15 key=value parser (DPC) | |||
\KV@toks@=\toks14 | |||
) | |||
(/usr/share/texmf-dist/tex/generic/oberdiek/ifpdf.sty | |||
Package: ifpdf 2018/09/07 v3.3 Provides the ifpdf switch | |||
) | |||
(/usr/share/texmf-dist/tex/generic/oberdiek/ifvtex.sty | |||
Package: ifvtex 2016/05/16 v1.6 Detect VTeX and its facilities (HO) | |||
Package ifvtex Info: VTeX not detected. | |||
) | |||
(/usr/share/texmf-dist/tex/generic/ifxetex/ifxetex.sty | |||
Package: ifxetex 2010/09/12 v0.6 Provides ifxetex conditional | |||
) | |||
\Gm@cnth=\count81 | |||
\Gm@cntv=\count82 | |||
\c@Gm@tempcnt=\count83 | |||
\Gm@bindingoffset=\dimen104 | |||
\Gm@wd@mp=\dimen105 | |||
\Gm@odd@mp=\dimen106 | |||
\Gm@even@mp=\dimen107 | |||
\Gm@layoutwidth=\dimen108 | |||
\Gm@layoutheight=\dimen109 | |||
\Gm@layouthoffset=\dimen110 | |||
\Gm@layoutvoffset=\dimen111 | |||
\Gm@dimlist=\toks15 | |||
) | |||
(/usr/share/texmf-dist/tex/latex/underscore/underscore.sty | |||
Package: underscore 2006/09/13 | |||
LaTeX Info: Redefining \_ on input line 42. | |||
) | |||
(/usr/share/texmf-dist/tex/latex/url/url.sty | |||
\Urlmuskip=\muskip10 | |||
Package: url 2013/09/16 ver 3.4 Verb mode for urls, etc. | |||
) | |||
(/usr/share/texmf-dist/tex/latex/tools/verbatim.sty | |||
Package: verbatim 2014/10/28 v1.5q LaTeX2e package for verbatim enhancements | |||
\every@verbatim=\toks16 | |||
\verbatim@line=\toks17 | |||
\verbatim@in@stream=\read1 | |||
) | |||
(/usr/share/texmf-dist/tex/latex/pdfpages/pdfpages.sty | |||
Package: pdfpages 2017/10/31 v0.5l Insert pages of external PDF documents (AM) | |||
(/usr/share/texmf-dist/tex/latex/base/ifthen.sty | |||
Package: ifthen 2014/09/29 v1.1c Standard LaTeX ifthen package (DPC) | |||
) | |||
(/usr/share/texmf-dist/tex/latex/tools/calc.sty | |||
Package: calc 2017/05/25 v4.3 Infix arithmetic (KKT,FJ) | |||
\calc@Acount=\count84 | |||
\calc@Bcount=\count85 | |||
\calc@Adimen=\dimen112 | |||
\calc@Bdimen=\dimen113 | |||
\calc@Askip=\skip41 | |||
\calc@Bskip=\skip42 | |||
LaTeX Info: Redefining \setlength on input line 80. | |||
LaTeX Info: Redefining \addtolength on input line 81. | |||
\calc@Ccount=\count86 | |||
\calc@Cskip=\skip43 | |||
) | |||
(/usr/share/texmf-dist/tex/latex/eso-pic/eso-pic.sty | |||
Package: eso-pic 2018/04/12 v2.0h eso-pic (RN) | |||
(/usr/share/texmf-dist/tex/generic/oberdiek/atbegshi.sty | |||
Package: atbegshi 2016/06/09 v1.18 At begin shipout hook (HO) | |||
(/usr/share/texmf-dist/tex/generic/oberdiek/infwarerr.sty | |||
Package: infwarerr 2016/05/16 v1.4 Providing info/warning/error messages (HO) | |||
) | |||
(/usr/share/texmf-dist/tex/generic/oberdiek/ltxcmds.sty | |||
Package: ltxcmds 2016/05/16 v1.23 LaTeX kernel commands for general use (HO) | |||
)) | |||
(/usr/share/texmf-dist/tex/latex/xcolor/xcolor.sty | |||
Package: xcolor 2016/05/11 v2.12 LaTeX color extensions (UK) | |||
(/usr/share/texmf-dist/tex/latex/graphics-cfg/color.cfg | |||
File: color.cfg 2016/01/02 v1.6 sample color configuration | |||
) | |||
Package xcolor Info: Driver file: pdftex.def on input line 225. | |||
(/usr/share/texmf-dist/tex/latex/graphics-def/pdftex.def | |||
File: pdftex.def 2018/01/08 v1.0l Graphics/color driver for pdftex | |||
) | |||
Package xcolor Info: Model `cmy' substituted by `cmy0' on input line 1348. | |||
Package xcolor Info: Model `hsb' substituted by `rgb' on input line 1352. | |||
Package xcolor Info: Model `RGB' extended on input line 1364. | |||
Package xcolor Info: Model `HTML' substituted by `rgb' on input line 1366. | |||
Package xcolor Info: Model `Hsb' substituted by `hsb' on input line 1367. | |||
Package xcolor Info: Model `tHsb' substituted by `hsb' on input line 1368. | |||
Package xcolor Info: Model `HSB' substituted by `hsb' on input line 1369. | |||
Package xcolor Info: Model `Gray' substituted by `gray' on input line 1370. | |||
Package xcolor Info: Model `wave' substituted by `hsb' on input line 1371. | |||
)) | |||
(/usr/share/texmf-dist/tex/latex/graphics/graphicx.sty | |||
Package: graphicx 2017/06/01 v1.1a Enhanced LaTeX Graphics (DPC,SPQR) | |||
(/usr/share/texmf-dist/tex/latex/graphics/graphics.sty | |||
Package: graphics 2017/06/25 v1.2c Standard LaTeX Graphics (DPC,SPQR) | |||
(/usr/share/texmf-dist/tex/latex/graphics/trig.sty | |||
Package: trig 2016/01/03 v1.10 sin cos tan (DPC) | |||
) | |||
(/usr/share/texmf-dist/tex/latex/graphics-cfg/graphics.cfg | |||
File: graphics.cfg 2016/06/04 v1.11 sample graphics configuration | |||
) | |||
Package graphics Info: Driver file: pdftex.def on input line 99. | |||
) | |||
\Gin@req@height=\dimen114 | |||
\Gin@req@width=\dimen115 | |||
) | |||
\AM@pagewidth=\dimen116 | |||
\AM@pageheight=\dimen117 | |||
(/usr/share/texmf-dist/tex/latex/pdfpages/pppdftex.def | |||
File: pppdftex.def 2017/10/31 v0.5l Pdfpages driver for pdfTeX (AM) | |||
) | |||
\AM@pagebox=\box27 | |||
\AM@global@opts=\toks18 | |||
\AM@toc@title=\toks19 | |||
\c@AM@survey=\count87 | |||
\AM@templatesizebox=\box28 | |||
) | |||
(/usr/share/texmf-dist/tex/latex/datetime2/datetime2.sty | |||
Package: datetime2 2018/07/20 v1.5.3 (NLCT) date and time formats | |||
(/usr/share/texmf-dist/tex/latex/tracklang/tracklang.sty | |||
Package: tracklang 2018/05/13 v1.3.6 (NLCT) Track Languages | |||
(/usr/share/texmf-dist/tex/generic/tracklang/tracklang.tex)) | |||
(/usr/share/texmf-dist/tex/latex/etoolbox/etoolbox.sty | |||
Package: etoolbox 2018/08/19 v2.5f e-TeX tools for LaTeX (JAW) | |||
\etb@tempcnta=\count88 | |||
) | |||
(/usr/share/texmf-dist/tex/latex/xkeyval/xkeyval.sty | |||
Package: xkeyval 2014/12/03 v2.7a package option processing (HA) | |||
(/usr/share/texmf-dist/tex/generic/xkeyval/xkeyval.tex | |||
(/usr/share/texmf-dist/tex/generic/xkeyval/xkvutils.tex | |||
\XKV@toks=\toks20 | |||
\XKV@tempa@toks=\toks21 | |||
) | |||
\XKV@depth=\count89 | |||
File: xkeyval.tex 2014/12/03 v2.7a key=value parser (HA) | |||
))) | |||
(/usr/share/texmf-dist/tex/latex/draftwatermark/draftwatermark.sty | |||
Package: draftwatermark 2015/02/19 1.2 Put a gray textual watermark on document | |||
pages | |||
(/usr/share/texmf-dist/tex/latex/everypage/everypage.sty | |||
Package: everypage 2007/06/20 1.1 Hooks to run on every page | |||
) | |||
\sc@wm@hcenter=\skip44 | |||
\sc@wm@vcenter=\skip45 | |||
\sc@wm@fontsize=\skip46 | |||
) (./ammann_score.aux) | |||
\openout1 = `ammann_score.aux'. | |||
LaTeX Font Info: Checking defaults for OML/cmm/m/it on input line 22. | |||
LaTeX Font Info: ... okay on input line 22. | |||
LaTeX Font Info: Checking defaults for T1/cmr/m/n on input line 22. | |||
LaTeX Font Info: ... okay on input line 22. | |||
LaTeX Font Info: Checking defaults for OT1/cmr/m/n on input line 22. | |||
LaTeX Font Info: ... okay on input line 22. | |||
LaTeX Font Info: Checking defaults for OMS/cmsy/m/n on input line 22. | |||
LaTeX Font Info: ... okay on input line 22. | |||
LaTeX Font Info: Checking defaults for OMX/cmex/m/n on input line 22. | |||
LaTeX Font Info: ... okay on input line 22. | |||
LaTeX Font Info: Checking defaults for U/cmr/m/n on input line 22. | |||
LaTeX Font Info: ... okay on input line 22. | |||
*geometry* driver: auto-detecting | |||
*geometry* detected driver: pdftex | |||
*geometry* verbose mode - [ preamble ] result: | |||
* driver: pdftex | |||
* paper: a4paper | |||
* layout: <same size as paper> | |||
* layoutoffset:(h,v)=(0.0pt,0.0pt) | |||
* modes: | |||
* h-part:(L,W,R)=(50.58878pt, 496.33032pt, 50.58878pt) | |||
* v-part:(T,H,B)=(50.58878pt, 743.8693pt, 50.58878pt) | |||
* \paperwidth=597.50787pt | |||
* \paperheight=845.04684pt | |||
* \textwidth=496.33032pt | |||
* \textheight=743.8693pt | |||
* \oddsidemargin=-21.68121pt | |||
* \evensidemargin=-21.68121pt | |||
* \topmargin=-78.68121pt | |||
* \headheight=12.0pt | |||
* \headsep=45.0pt | |||
* \topskip=10.0pt | |||
* \footskip=25.0pt | |||
* \marginparwidth=90.0pt | |||
* \marginparsep=11.0pt | |||
* \columnsep=10.0pt | |||
* \skip\footins=10.0pt plus 2.0pt minus 4.0pt | |||
* \hoffset=0.0pt | |||
* \voffset=0.0pt | |||
* \mag=1000 | |||
* \@twocolumnfalse | |||
* \@twosidefalse | |||
* \@mparswitchfalse | |||
* \@reversemarginfalse | |||
* (1in=72.27pt=25.4mm, 1cm=28.453pt) | |||
\AtBeginShipoutBox=\box29 | |||
(/usr/share/texmf-dist/tex/context/base/mkii/supp-pdf.mkii | |||
[Loading MPS to PDF converter (version 2006.09.02).] | |||
\scratchcounter=\count90 | |||
\scratchdimen=\dimen118 | |||
\scratchbox=\box30 | |||
\nofMPsegments=\count91 | |||
\nofMParguments=\count92 | |||
\everyMPshowfont=\toks22 | |||
\MPscratchCnt=\count93 | |||
\MPscratchDim=\dimen119 | |||
\MPnumerator=\count94 | |||
\makeMPintoPDFobject=\count95 | |||
< |